Nuprl Lemma : loset_properties
∀s:LOSet. Connex(|s|;x,y.x ≤ y)
Proof
Definitions occuring in Statement :
loset: LOSet
,
set_leq: a ≤ b
,
set_car: |p|
,
connex: Connex(T;x,y.R[x; y])
,
all: ∀x:A. B[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
loset: LOSet
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
poset: POSet{i}
,
qoset: QOSet
,
dset: DSet
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
implies: P
⇒ Q
,
sq_stable: SqStable(P)
,
squash: ↓T
Lemmas referenced :
loset_wf,
decidable__set_leq,
set_leq_wf,
set_car_wf,
sq_stable__connex
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
sqequalHypSubstitution,
setElimination,
thin,
rename,
cut,
lemma_by_obid,
isectElimination,
hypothesisEquality,
hypothesis,
sqequalRule,
lambdaEquality,
independent_functionElimination,
dependent_functionElimination,
because_Cache,
introduction,
imageMemberEquality,
baseClosed,
imageElimination
Latex:
\mforall{}s:LOSet. Connex(|s|;x,y.x \mleq{} y)
Date html generated:
2016_05_15-PM-00_05_22
Last ObjectModification:
2016_01_15-AM-07_08_47
Theory : sets_1
Home
Index