Nuprl Lemma : loset_properties

s:LOSet. Connex(|s|;x,y.x ≤ y)


Proof




Definitions occuring in Statement :  loset: LOSet set_leq: a ≤ b set_car: |p| connex: Connex(T;x,y.R[x; y]) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] loset: LOSet uall: [x:A]. B[x] member: t ∈ T poset: POSet{i} qoset: QOSet dset: DSet so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] implies:  Q sq_stable: SqStable(P) squash: T
Lemmas referenced :  loset_wf decidable__set_leq set_leq_wf set_car_wf sq_stable__connex
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut lemma_by_obid isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality independent_functionElimination dependent_functionElimination because_Cache introduction imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}s:LOSet.  Connex(|s|;x,y.x  \mleq{}  y)



Date html generated: 2016_05_15-PM-00_05_22
Last ObjectModification: 2016_01_15-AM-07_08_47

Theory : sets_1


Home Index