Nuprl Lemma : loset_properties
∀s:LOSet. Connex(|s|;x,y.x ≤ y)
Proof
Definitions occuring in Statement : 
loset: LOSet
, 
set_leq: a ≤ b
, 
set_car: |p|
, 
connex: Connex(T;x,y.R[x; y])
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
loset: LOSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
loset_wf, 
decidable__set_leq, 
set_leq_wf, 
set_car_wf, 
sq_stable__connex
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}s:LOSet.  Connex(|s|;x,y.x  \mleq{}  y)
Date html generated:
2016_05_15-PM-00_05_22
Last ObjectModification:
2016_01_15-AM-07_08_47
Theory : sets_1
Home
Index