Nuprl Lemma : oalist_pr_length_ind

a:LOSet. ∀b:AbDMon. ∀Q:((|a| × |b|) List) ⟶ ((|a| × |b|) List) ⟶ ℙ.
  ((∀ps,qs:|oal(a;b)|.  ((∀us,vs:|oal(a;b)|.  (||us|| ||vs|| < ||ps|| ||qs||  Q[us;vs]))  Q[ps;qs]))
   {∀ps,qs:|oal(a;b)|.  Q[ps;qs]})


Proof




Definitions occuring in Statement :  oalist: oal(a;b) length: ||as|| list: List less_than: a < b prop: guard: {T} so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] add: m abdmonoid: AbDMon grp_car: |g| loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q guard: {T} member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] loset: LOSet poset: POSet{i} qoset: QOSet abdmonoid: AbDMon dset: DSet oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set so_apply: x[s1;s2] dmon: DMon mon: Mon so_apply: x[s] pi2: snd(t) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top decidable: Dec(P) or: P ∨ Q le: A ≤ B less_than': less_than'(a;b) nat: ge: i ≥  uiff: uiff(P;Q) less_than: a < b squash: T
Lemmas referenced :  all_wf set_car_wf oalist_wf less_than_wf length_wf set_prod_wf dset_of_mon_wf dset_wf list_wf grp_car_wf abdmonoid_wf loset_wf int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf decidable__equal_int subtract_wf int_seg_subtype false_wf decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf add_nat_wf length_wf_nat nat_wf nat_properties add-is-int-iff itermAdd_wf int_term_value_add_lemma equal_wf decidable__lt lelt_wf set_wf primrec-wf2 pi2_wf pi1_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis applyEquality because_Cache sqequalRule lambdaEquality functionEquality addEquality setElimination rename functionExtensionality productEquality universeEquality cumulativity independent_pairEquality natural_numberEquality productElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll unionElimination addLevel equalityTransitivity equalitySymmetry applyLambdaEquality levelHypothesis hypothesis_subsumption dependent_set_memberEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed independent_functionElimination imageElimination

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:((|a|  \mtimes{}  |b|)  List)  {}\mrightarrow{}  ((|a|  \mtimes{}  |b|)  List)  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}ps,qs:|oal(a;b)|.
            ((\mforall{}us,vs:|oal(a;b)|.    (||us||  +  ||vs||  <  ||ps||  +  ||qs||  {}\mRightarrow{}  Q[us;vs]))  {}\mRightarrow{}  Q[ps;qs]))
    {}\mRightarrow{}  \{\mforall{}ps,qs:|oal(a;b)|.    Q[ps;qs]\})



Date html generated: 2017_10_01-AM-10_02_00
Last ObjectModification: 2017_03_03-PM-01_04_47

Theory : polynom_2


Home Index