Nuprl Lemma : oalist_pr_length_ind
∀a:LOSet. ∀b:AbDMon. ∀Q:((|a| × |b|) List) ⟶ ((|a| × |b|) List) ⟶ ℙ.
  ((∀ps,qs:|oal(a;b)|.  ((∀us,vs:|oal(a;b)|.  (||us|| + ||vs|| < ||ps|| + ||qs|| 
⇒ Q[us;vs])) 
⇒ Q[ps;qs]))
  
⇒ {∀ps,qs:|oal(a;b)|.  Q[ps;qs]})
Proof
Definitions occuring in Statement : 
oalist: oal(a;b)
, 
length: ||as||
, 
list: T List
, 
less_than: a < b
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
add: n + m
, 
abdmonoid: AbDMon
, 
grp_car: |g|
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
abdmonoid: AbDMon
, 
dset: DSet
, 
oalist: oal(a;b)
, 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq)
, 
set_car: |p|
, 
pi1: fst(t)
, 
dset_list: s List
, 
set_prod: s × t
, 
dset_of_mon: g↓set
, 
so_apply: x[s1;s2]
, 
dmon: DMon
, 
mon: Mon
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
all_wf, 
set_car_wf, 
oalist_wf, 
less_than_wf, 
length_wf, 
set_prod_wf, 
dset_of_mon_wf, 
dset_wf, 
list_wf, 
grp_car_wf, 
abdmonoid_wf, 
loset_wf, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
decidable__equal_int, 
subtract_wf, 
int_seg_subtype, 
false_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
le_wf, 
add_nat_wf, 
length_wf_nat, 
nat_wf, 
nat_properties, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
equal_wf, 
decidable__lt, 
lelt_wf, 
set_wf, 
primrec-wf2, 
pi2_wf, 
pi1_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
addEquality, 
setElimination, 
rename, 
functionExtensionality, 
productEquality, 
universeEquality, 
cumulativity, 
independent_pairEquality, 
natural_numberEquality, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
addLevel, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
levelHypothesis, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_functionElimination, 
imageElimination
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:((|a|  \mtimes{}  |b|)  List)  {}\mrightarrow{}  ((|a|  \mtimes{}  |b|)  List)  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}ps,qs:|oal(a;b)|.
            ((\mforall{}us,vs:|oal(a;b)|.    (||us||  +  ||vs||  <  ||ps||  +  ||qs||  {}\mRightarrow{}  Q[us;vs]))  {}\mRightarrow{}  Q[ps;qs]))
    {}\mRightarrow{}  \{\mforall{}ps,qs:|oal(a;b)|.    Q[ps;qs]\})
Date html generated:
2017_10_01-AM-10_02_00
Last ObjectModification:
2017_03_03-PM-01_04_47
Theory : polynom_2
Home
Index