Nuprl Lemma : lookup_before_start_a

a:QOSet. ∀b:AbMon. ∀k:|a|. ∀ps:(|a| × |b|) List.
  ((↑(∀bk'(:|a|) ∈ map(λz.(fst(z));ps). (k' <b k)))  ((ps[k]) e ∈ |b|))


Proof




Definitions occuring in Statement :  lookup: as[k] ball: ball map: map(f;as) list: List assert: b pi1: fst(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] product: x:A × B[x] equal: t ∈ T abmonoid: AbMon grp_id: e grp_car: |g| qoset: QOSet set_blt: a <b b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T qoset: QOSet dset: DSet abmonoid: AbMon mon: Mon so_lambda: λ2x.t[x] prop: pi1: fst(t) so_apply: x[s] ball: ball top: Top assert: b ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: band: p ∧b q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a bfalse: ff iff: ⇐⇒ Q rev_implies:  Q infix_ap: y not: ¬A false: False guard: {T}
Lemmas referenced :  list_induction set_car_wf grp_car_wf assert_wf ball_wf map_wf set_blt_wf equal_wf lookup_wf grp_id_wf list_wf pi1_wf abmonoid_wf qoset_wf map_nil_lemma lookup_nil_lemma ball_nil_lemma true_wf map_cons_lemma lookup_cons_pr_lemma ball_cons_lemma iff_transitivity bool_wf eqtt_to_assert assert_of_set_lt set_lt_wf iff_weakening_uiff assert_of_band set_eq_wf uiff_transitivity equal-wf-T-base assert_of_dset_eq bnot_wf not_wf eqff_to_assert assert_of_bnot set_lt_transitivity_2 set_leq_weakening_eq set_lt_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination productEquality setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality functionEquality dependent_functionElimination because_Cache productElimination independent_functionElimination independent_pairEquality isect_memberEquality voidElimination voidEquality unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry independent_pairFormation applyEquality baseClosed impliesFunctionality

Latex:
\mforall{}a:QOSet.  \mforall{}b:AbMon.  \mforall{}k:|a|.  \mforall{}ps:(|a|  \mtimes{}  |b|)  List.
    ((\muparrow{}(\mforall{}\msubb{}k'(:|a|)  \mmember{}  map(\mlambda{}z.(fst(z));ps).  (k'  <\msubb{}  k)))  {}\mRightarrow{}  ((ps[k])  =  e))



Date html generated: 2017_10_01-AM-10_02_17
Last ObjectModification: 2017_03_03-PM-01_04_38

Theory : polynom_2


Home Index