Nuprl Lemma : mk_abdmonoid

[T:Type]. ∀[eq,le:T ⟶ T ⟶ 𝔹]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T]. ∀[inv:T ⟶ T].
  (<T, eq, le, op, id, inv> ∈ AbDMon) supposing (Comm(T;op) and Ident(T;op;id) and Assoc(T;op) and IsEqFun(T;eq))


Proof




Definitions occuring in Statement :  abdmonoid: AbDMon ident: Ident(T;op;id) eqfun_p: IsEqFun(T;eq) comm: Comm(T;op) assoc: Assoc(T;op) bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] pair: <a, b> universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: abdmonoid: AbDMon grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) dmon: DMon mon: Mon
Lemmas referenced :  comm_wf ident_wf assoc_wf eqfun_p_wf bool_wf grp_car_wf grp_op_wf mk_dmon
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality isect_memberEquality because_Cache functionEquality universeEquality dependent_set_memberEquality setElimination rename independent_isectElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq,le:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[id:T].  \mforall{}[inv:T  {}\mrightarrow{}  T].
    (<T,  eq,  le,  op,  id,  inv>  \mmember{}  AbDMon)  supposing 
          (Comm(T;op)  and 
          Ident(T;op;id)  and 
          Assoc(T;op)  and 
          IsEqFun(T;eq))



Date html generated: 2016_05_15-PM-00_07_45
Last ObjectModification: 2015_12_26-PM-11_47_07

Theory : groups_1


Home Index