Nuprl Lemma : mk_abdmonoid
∀[T:Type]. ∀[eq,le:T ⟶ T ⟶ 𝔹]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T]. ∀[inv:T ⟶ T].
  (<T, eq, le, op, id, inv> ∈ AbDMon) supposing (Comm(T;op) and Ident(T;op;id) and Assoc(T;op) and IsEqFun(T;eq))
Proof
Definitions occuring in Statement : 
abdmonoid: AbDMon
, 
ident: Ident(T;op;id)
, 
eqfun_p: IsEqFun(T;eq)
, 
comm: Comm(T;op)
, 
assoc: Assoc(T;op)
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
abdmonoid: AbDMon
, 
grp_car: |g|
, 
pi1: fst(t)
, 
grp_op: *
, 
pi2: snd(t)
, 
dmon: DMon
, 
mon: Mon
Lemmas referenced : 
comm_wf, 
ident_wf, 
assoc_wf, 
eqfun_p_wf, 
bool_wf, 
grp_car_wf, 
grp_op_wf, 
mk_dmon
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
dependent_set_memberEquality, 
setElimination, 
rename, 
independent_isectElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq,le:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[id:T].  \mforall{}[inv:T  {}\mrightarrow{}  T].
    (<T,  eq,  le,  op,  id,  inv>  \mmember{}  AbDMon)  supposing 
          (Comm(T;op)  and 
          Ident(T;op;id)  and 
          Assoc(T;op)  and 
          IsEqFun(T;eq))
Date html generated:
2016_05_15-PM-00_07_45
Last ObjectModification:
2015_12_26-PM-11_47_07
Theory : groups_1
Home
Index