Nuprl Lemma : oal_merge_comm

a:LOSet. ∀b:AbDMon. ∀ps,qs:|oal(a;b)|.  ((ps ++ qs) (qs ++ ps) ∈ |oal(a;b)|)


Proof




Definitions occuring in Statement :  oal_merge: ps ++ qs oalist: oal(a;b) all: x:A. B[x] equal: t ∈ T abdmonoid: AbDMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet squash: T prop: abdmonoid: AbDMon dmon: DMon mon: Mon true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q loset: LOSet poset: POSet{i} qoset: QOSet dset_of_mon: g↓set set_car: |p| pi1: fst(t) oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) dset_list: List set_prod: s × t
Lemmas referenced :  lookups_same_a oal_merge_wf2 set_car_wf oalist_wf dset_wf abdmonoid_wf loset_wf equal_wf squash_wf true_wf grp_car_wf lookup_merge iff_weakening_equal infix_ap_wf dset_of_mon_wf0 grp_op_wf lookup_wf grp_id_wf abmonoid_comm abmonoid_subtype_iabmonoid abdmonoid_abmonoid subtype_rel_transitivity abmonoid_wf iabmonoid_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis independent_functionElimination isectElimination applyEquality lambdaEquality setElimination rename sqequalRule because_Cache imageElimination equalityTransitivity equalitySymmetry universeEquality natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination functionEquality instantiate

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs:|oal(a;b)|.    ((ps  ++  qs)  =  (qs  ++  ps))



Date html generated: 2017_10_01-AM-10_02_52
Last ObjectModification: 2017_03_03-PM-01_05_27

Theory : polynom_2


Home Index