Nuprl Lemma : oal_merge_comm
∀a:LOSet. ∀b:AbDMon. ∀ps,qs:|oal(a;b)|.  ((ps ++ qs) = (qs ++ ps) ∈ |oal(a;b)|)
Proof
Definitions occuring in Statement : 
oal_merge: ps ++ qs, 
oalist: oal(a;b), 
all: ∀x:A. B[x], 
equal: s = t ∈ T, 
abdmonoid: AbDMon, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
dset: DSet, 
squash: ↓T, 
prop: ℙ, 
abdmonoid: AbDMon, 
dmon: DMon, 
mon: Mon, 
true: True, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
dset_of_mon: g↓set, 
set_car: |p|, 
pi1: fst(t), 
oalist: oal(a;b), 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq), 
dset_list: s List, 
set_prod: s × t
Lemmas referenced : 
lookups_same_a, 
oal_merge_wf2, 
set_car_wf, 
oalist_wf, 
dset_wf, 
abdmonoid_wf, 
loset_wf, 
equal_wf, 
squash_wf, 
true_wf, 
grp_car_wf, 
lookup_merge, 
iff_weakening_equal, 
infix_ap_wf, 
dset_of_mon_wf0, 
grp_op_wf, 
lookup_wf, 
grp_id_wf, 
abmonoid_comm, 
abmonoid_subtype_iabmonoid, 
abdmonoid_abmonoid, 
subtype_rel_transitivity, 
abmonoid_wf, 
iabmonoid_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
isectElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
because_Cache, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
functionEquality, 
instantiate
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps,qs:|oal(a;b)|.    ((ps  ++  qs)  =  (qs  ++  ps))
Date html generated:
2017_10_01-AM-10_02_52
Last ObjectModification:
2017_03_03-PM-01_05_27
Theory : polynom_2
Home
Index