Nuprl Lemma : oal_nil_wf
∀a:LOSet. ∀b:AbDMon. (00 ∈ |oal(a;b)|)
Proof
Definitions occuring in Statement :
oal_nil: 00
,
oalist: oal(a;b)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
abdmonoid: AbDMon
,
loset: LOSet
,
set_car: |p|
Definitions unfolded in proof :
oal_nil: 00
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
oalist: oal(a;b)
,
dset_set: dset_set,
mk_dset: mk_dset(T, eq)
,
set_car: |p|
,
pi1: fst(t)
,
dset_list: s List
,
set_prod: s × t
,
dset_of_mon: g↓set
,
and: P ∧ Q
,
cand: A c∧ B
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
sd_ordered: sd_ordered(as)
,
ycomb: Y
,
list_ind: list_ind,
map: map(f;as)
,
nil: []
,
it: ⋅
,
btrue: tt
,
true: True
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
mem: a ∈b as
,
mon_for: For{g} x ∈ as. f[x]
,
for: For{T,op,id} x ∈ as. f[x]
,
reduce: reduce(f;k;as)
,
grp_id: e
,
pi2: snd(t)
,
bor_mon: <𝔹,∨b>
,
bfalse: ff
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
abdmonoid: AbDMon
,
dmon: DMon
,
mon: Mon
,
subtype_rel: A ⊆r B
,
loset: LOSet
,
poset: POSet{i}
,
qoset: QOSet
,
dset: DSet
Lemmas referenced :
assert_wf,
mem_wf,
dset_of_mon_wf,
grp_id_wf,
nil_wf,
set_car_wf,
dset_of_mon_wf0,
grp_car_wf,
sd_ordered_wf,
map_wf,
not_wf,
abdmonoid_wf,
loset_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
cut,
hypothesis,
natural_numberEquality,
independent_pairFormation,
sqequalHypSubstitution,
lemma_by_obid,
isectElimination,
thin,
dependent_functionElimination,
setElimination,
rename,
hypothesisEquality,
applyEquality,
because_Cache,
dependent_set_memberEquality,
productEquality,
productElimination,
lambdaEquality
Latex:
\mforall{}a:LOSet. \mforall{}b:AbDMon. (00 \mmember{} |oal(a;b)|)
Date html generated:
2016_05_16-AM-08_15_49
Last ObjectModification:
2015_12_28-PM-06_28_40
Theory : polynom_2
Home
Index