Nuprl Lemma : oal_nil_wf

a:LOSet. ∀b:AbDMon.  (00 ∈ |oal(a;b)|)


Proof




Definitions occuring in Statement :  oal_nil: 00 oalist: oal(a;b) all: x:A. B[x] member: t ∈ T abdmonoid: AbDMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  oal_nil: 00 all: x:A. B[x] member: t ∈ T oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set and: P ∧ Q cand: c∧ B assert: b ifthenelse: if then else fi  sd_ordered: sd_ordered(as) ycomb: Y list_ind: list_ind map: map(f;as) nil: [] it: btrue: tt true: True not: ¬A implies:  Q false: False mem: a ∈b as mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] reduce: reduce(f;k;as) grp_id: e pi2: snd(t) bor_mon: <𝔹,∨b> bfalse: ff prop: uall: [x:A]. B[x] abdmonoid: AbDMon dmon: DMon mon: Mon subtype_rel: A ⊆B loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet
Lemmas referenced :  assert_wf mem_wf dset_of_mon_wf grp_id_wf nil_wf set_car_wf dset_of_mon_wf0 grp_car_wf sd_ordered_wf map_wf not_wf abdmonoid_wf loset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut hypothesis natural_numberEquality independent_pairFormation sqequalHypSubstitution lemma_by_obid isectElimination thin dependent_functionElimination setElimination rename hypothesisEquality applyEquality because_Cache dependent_set_memberEquality productEquality productElimination lambdaEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.    (00  \mmember{}  |oal(a;b)|)



Date html generated: 2016_05_16-AM-08_15_49
Last ObjectModification: 2015_12_28-PM-06_28_40

Theory : polynom_2


Home Index