Nuprl Lemma : oal_nil_ident_l

a:LOSet. ∀b:AbDMon. ∀ps:|oal(a;b)|.  ((00 ++ ps) ps ∈ |oal(a;b)|)


Proof




Definitions occuring in Statement :  oal_merge: ps ++ qs oal_nil: 00 oalist: oal(a;b) all: x:A. B[x] equal: t ∈ T abdmonoid: AbDMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] oal_merge: ps ++ qs ycomb: Y ifthenelse: if then else fi  null: null(as) oal_nil: 00 nil: [] it: btrue: tt member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet
Lemmas referenced :  set_car_wf oalist_wf dset_wf abdmonoid_wf loset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalRule hypothesis hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination applyEquality lambdaEquality setElimination rename

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps:|oal(a;b)|.    ((00  ++  ps)  =  ps)



Date html generated: 2016_05_16-AM-08_18_23
Last ObjectModification: 2015_12_28-PM-06_26_46

Theory : polynom_2


Home Index