Nuprl Lemma : dset_properties

[s:DSet]. IsEqFun(|s|;=b)


Proof




Definitions occuring in Statement :  dset: DSet set_eq: =b set_car: |p| eqfun_p: IsEqFun(T;eq) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T dset: DSet sq_stable: SqStable(P) implies:  Q squash: T eqfun_p: IsEqFun(T;eq) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: infix_ap: y
Lemmas referenced :  dset_wf equal_wf assert_witness assert_wf set_eq_wf set_car_wf sq_stable__eqfun_p
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination isect_memberEquality productElimination independent_pairEquality axiomEquality applyEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[s:DSet].  IsEqFun(|s|;=\msubb{})



Date html generated: 2016_05_15-PM-00_04_00
Last ObjectModification: 2016_01_15-AM-07_08_44

Theory : sets_1


Home Index