Nuprl Lemma : dset_properties
∀[s:DSet]. IsEqFun(|s|;=b)
Proof
Definitions occuring in Statement : 
dset: DSet, 
set_eq: =b, 
set_car: |p|, 
eqfun_p: IsEqFun(T;eq), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
dset: DSet, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
eqfun_p: IsEqFun(T;eq), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
infix_ap: x f y
Lemmas referenced : 
dset_wf, 
equal_wf, 
assert_witness, 
assert_wf, 
set_eq_wf, 
set_car_wf, 
sq_stable__eqfun_p
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[s:DSet].  IsEqFun(|s|;=\msubb{})
Date html generated:
2016_05_15-PM-00_04_00
Last ObjectModification:
2016_01_15-AM-07_08_44
Theory : sets_1
Home
Index