Nuprl Lemma : oal_nil_ident_r

a:LOSet. ∀b:AbDMon. ∀ps:|oal(a;b)|.  ((ps ++ 00) ps ∈ |oal(a;b)|)


Proof




Definitions occuring in Statement :  oal_merge: ps ++ qs oal_nil: 00 oalist: oal(a;b) all: x:A. B[x] equal: t ∈ T abdmonoid: AbDMon loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uall: [x:A]. B[x] subtype_rel: A ⊆B dset: DSet so_apply: x[s] implies:  Q oal_nil: 00 oalist: oal(a;b) dset_set: dset_set mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) dset_list: List set_prod: s × t dset_of_mon: g↓set top: Top prop: abdmonoid: AbDMon dmon: DMon mon: Mon loset: LOSet poset: POSet{i} qoset: QOSet guard: {T}
Lemmas referenced :  oalist_cases_a equal_wf set_car_wf oalist_wf dset_wf oal_merge_wf2 oal_nil_wf oal_merge_left_nil_lemma nil_in_oalist oal_merge_right_nil_lemma cons_in_oalist not_wf grp_car_wf grp_id_wf assert_wf before_wf map_wf set_prod_wf dset_of_mon_wf abdmonoid_wf loset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule lambdaEquality isectElimination hypothesis applyEquality setElimination rename because_Cache independent_functionElimination isect_memberEquality voidElimination voidEquality productElimination

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}ps:|oal(a;b)|.    ((ps  ++  00)  =  ps)



Date html generated: 2016_05_16-AM-08_18_21
Last ObjectModification: 2015_12_28-PM-06_26_58

Theory : polynom_2


Home Index