Nuprl Lemma : oset_of_ocmon_wf

[g:OMon]. (g↓oset ∈ LOSet)


Proof




Definitions occuring in Statement :  oset_of_ocmon: g↓oset omon: OMon loset: LOSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] omon: OMon and: P ∧ Q abmonoid: AbMon mon: Mon ulinorder: UniformLinorder(T;x,y.R[x; y]) monoid_p: IsMonoid(T;op;id) uorder: UniformOrder(T;x,y.R[x; y]) loset: LOSet poset: POSet{i} qoset: QOSet dset: DSet oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) set_eq: =b pi2: snd(t) prop: set_leq: a ≤ b set_le: b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] upreorder: UniformPreorder(T;x,y.R[x; y])
Lemmas referenced :  omon_properties abmonoid_properties mon_properties omon_wf oset_of_ocmon_wf0 eqfun_p_wf set_car_wf set_eq_wf upreorder_wf set_leq_wf uanti_sym_wf connex_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality sqequalHypSubstitution extract_by_obid dependent_functionElimination thin hypothesis applyLambdaEquality productElimination setElimination rename isectElimination equalityTransitivity equalitySymmetry sqequalRule axiomEquality dependent_set_memberEquality lambdaEquality because_Cache independent_pairFormation

Latex:
\mforall{}[g:OMon].  (g\mdownarrow{}oset  \mmember{}  LOSet)



Date html generated: 2017_10_01-AM-08_14_35
Last ObjectModification: 2017_02_28-PM-01_58_48

Theory : groups_1


Home Index