Nuprl Lemma : oset_of_ocmon_wf0
∀[g:GrpSig]. (g↓oset ∈ PosetSig)
Proof
Definitions occuring in Statement :
oset_of_ocmon: g↓oset
,
grp_sig: GrpSig
,
poset_sig: PosetSig
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Definitions unfolded in proof :
oset_of_ocmon: g↓oset
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
Lemmas referenced :
dset_of_mon_wf0,
grp_sig_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[g:GrpSig]. (g\mdownarrow{}oset \mmember{} PosetSig)
Date html generated:
2016_05_15-PM-00_11_31
Last ObjectModification:
2015_12_26-PM-11_43_15
Theory : groups_1
Home
Index