Nuprl Lemma : oset_of_ocmon_wf0

[g:GrpSig]. (g↓oset ∈ PosetSig)


Proof




Definitions occuring in Statement :  oset_of_ocmon: g↓oset grp_sig: GrpSig poset_sig: PosetSig uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  oset_of_ocmon: g↓oset uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  dset_of_mon_wf0 grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[g:GrpSig].  (g\mdownarrow{}oset  \mmember{}  PosetSig)



Date html generated: 2016_05_15-PM-00_11_31
Last ObjectModification: 2015_12_26-PM-11_43_15

Theory : groups_1


Home Index