Nuprl Lemma : omon_properties
∀g:OMon. (UniformLinorder(|g|;x,y.↑(x ≤b y)) ∧ IsEqFun(|g|;=b))
Proof
Definitions occuring in Statement : 
omon: OMon
, 
grp_le: ≤b
, 
grp_eq: =b
, 
grp_car: |g|
, 
ulinorder: UniformLinorder(T;x,y.R[x; y])
, 
eqfun_p: IsEqFun(T;eq)
, 
assert: ↑b
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
omon: OMon
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
abmonoid: AbMon
, 
mon: Mon
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
cand: A c∧ B
, 
ulinorder: UniformLinorder(T;x,y.R[x; y])
, 
uorder: UniformOrder(T;x,y.R[x; y])
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
, 
eqfun_p: IsEqFun(T;eq)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_type: SQType(T)
, 
guard: {T}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
Lemmas referenced : 
sq_stable__and, 
ulinorder_wf, 
grp_car_wf, 
assert_wf, 
grp_le_wf, 
equal_wf, 
bool_wf, 
sq_stable__equal, 
grp_eq_wf, 
band_wf, 
squash_wf, 
omon_wf, 
urefl_wf, 
infix_ap_wf, 
utrans_wf, 
uanti_sym_wf, 
connex_wf, 
uall_wf, 
isect_wf, 
sq_stable__urefl, 
sq_stable_from_decidable, 
decidable__assert, 
assert_witness, 
sq_stable__utrans, 
sq_stable__uanti_sym, 
sq_stable__connex, 
sq_stable__uall, 
assert_of_band, 
assert_elim, 
subtype_base_sq, 
bool_subtype_base, 
eqfun_p_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
productElimination, 
isect_memberEquality, 
functionEquality, 
functionExtensionality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_functionElimination, 
axiomEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
productEquality, 
isect_memberFormation, 
independent_pairEquality, 
independent_isectElimination, 
instantiate, 
cumulativity, 
natural_numberEquality, 
hyp_replacement, 
Error :applyLambdaEquality, 
dependent_set_memberEquality, 
setEquality
Latex:
\mforall{}g:OMon.  (UniformLinorder(|g|;x,y.\muparrow{}(x  \mleq{}\msubb{}  y))  \mwedge{}  IsEqFun(|g|;=\msubb{}))
Date html generated:
2016_10_21-AM-11_25_34
Last ObjectModification:
2016_07_12-PM-01_08_15
Theory : groups_1
Home
Index