Nuprl Lemma : omon_properties

g:OMon. (UniformLinorder(|g|;x,y.↑(x ≤b y)) ∧ IsEqFun(|g|;=b))


Proof




Definitions occuring in Statement :  omon: OMon grp_le: b grp_eq: =b grp_car: |g| ulinorder: UniformLinorder(T;x,y.R[x; y]) eqfun_p: IsEqFun(T;eq) assert: b infix_ap: y all: x:A. B[x] and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] omon: OMon uall: [x:A]. B[x] member: t ∈ T abmonoid: AbMon mon: Mon so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] and: P ∧ Q prop: implies:  Q sq_stable: SqStable(P) squash: T cand: c∧ B ulinorder: UniformLinorder(T;x,y.R[x; y]) uorder: UniformOrder(T;x,y.R[x; y]) so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s] utrans: UniformlyTrans(T;x,y.E[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) eqfun_p: IsEqFun(T;eq) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) sq_type: SQType(T) guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True urefl: UniformlyRefl(T;x,y.E[x; y])
Lemmas referenced :  sq_stable__and ulinorder_wf grp_car_wf assert_wf grp_le_wf equal_wf bool_wf sq_stable__equal grp_eq_wf band_wf squash_wf omon_wf urefl_wf infix_ap_wf utrans_wf uanti_sym_wf connex_wf uall_wf isect_wf sq_stable__urefl sq_stable_from_decidable decidable__assert assert_witness sq_stable__utrans sq_stable__uanti_sym sq_stable__connex sq_stable__uall assert_of_band assert_elim subtype_base_sq bool_subtype_base eqfun_p_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality because_Cache productElimination isect_memberEquality functionEquality functionExtensionality equalityTransitivity equalitySymmetry independent_functionElimination dependent_functionElimination axiomEquality imageMemberEquality baseClosed imageElimination independent_pairFormation productEquality isect_memberFormation independent_pairEquality independent_isectElimination instantiate cumulativity natural_numberEquality hyp_replacement Error :applyLambdaEquality,  dependent_set_memberEquality setEquality

Latex:
\mforall{}g:OMon.  (UniformLinorder(|g|;x,y.\muparrow{}(x  \mleq{}\msubb{}  y))  \mwedge{}  IsEqFun(|g|;=\msubb{}))



Date html generated: 2016_10_21-AM-11_25_34
Last ObjectModification: 2016_07_12-PM-01_08_15

Theory : groups_1


Home Index