Nuprl Lemma : uanti_sym_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (UniformlyAntiSym(T;x,y.R[x;y]) ∈ ℙ)
Proof
Definitions occuring in Statement : 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y])
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
uall_wf, 
isect_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
because_Cache, 
applyEquality, 
functionExtensionality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (UniformlyAntiSym(T;x,y.R[x;y])  \mmember{}  \mBbbP{})
Date html generated:
2016_10_21-AM-09_42_07
Last ObjectModification:
2016_08_01-PM-09_49_15
Theory : rel_1
Home
Index