Nuprl Lemma : uanti_sym_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (UniformlyAntiSym(T;x,y.R[x;y]) ∈ ℙ)


Proof




Definitions occuring in Statement :  uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s1;s2] subtype_rel: A ⊆B so_apply: x[s] prop:
Lemmas referenced :  uall_wf isect_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality because_Cache applyEquality functionExtensionality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (UniformlyAntiSym(T;x,y.R[x;y])  \mmember{}  \mBbbP{})



Date html generated: 2016_10_21-AM-09_42_07
Last ObjectModification: 2016_08_01-PM-09_49_15

Theory : rel_1


Home Index