Nuprl Lemma : mon_properties

[g:Mon]. IsMonoid(|g|;*;e)


Proof




Definitions occuring in Statement :  mon: Mon grp_id: e grp_op: * grp_car: |g| monoid_p: IsMonoid(T;op;id) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T monoid_p: IsMonoid(T;op;id) and: P ∧ Q assoc: Assoc(T;op) mon: Mon ident: Ident(T;op;id) prop: implies:  Q sq_stable: SqStable(P) squash: T
Lemmas referenced :  squash_wf sq_stable__ident sq_stable__assoc grp_id_wf ident_wf grp_op_wf assoc_wf sq_stable__and mon_wf grp_car_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality axiomEquality hypothesis lemma_by_obid setElimination rename independent_functionElimination lambdaFormation because_Cache lambdaEquality dependent_functionElimination imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}[g:Mon].  IsMonoid(|g|;*;e)



Date html generated: 2016_05_15-PM-00_07_00
Last ObjectModification: 2016_01_15-PM-11_06_27

Theory : groups_1


Home Index