Step
*
2
of Lemma
aa_bst_insert_sublemma_right
1. left_subtree : aa_ltree(
)@i
2. right_subtree : aa_ltree(
)@i
3. tp : aa_ltree(
)@i
4. val : 
@i
5. i : 
@i
6. aa_binary_search_tree(tp)@i
7. aa_binary_search_tree(aa_lt_node(val;left_subtree;right_subtree))@i
8. i > val@i
9. 
j:
. (aa_bst_member_prop(j;tp) 

 (j = i) 
 aa_bst_member_prop(j;right_subtree))@i
10. j : 
@i
11. (j = i) 
 aa_bst_member_prop(j;aa_lt_node(val;left_subtree;right_subtree))@i
 aa_bst_member_prop(j;aa_lt_node(val;left_subtree;tp))
BY
{ InstHyp [
j
] 9  THEN D (-1) THEN Auto' THEN BoolCase 
(j =
 i)
 THEN Auto'
 }
1
1. left_subtree : aa_ltree(
)@i
2. right_subtree : aa_ltree(
)@i
3. tp : aa_ltree(
)@i
4. val : 
@i
5. i : 
@i
6. aa_binary_search_tree(tp)@i
7. aa_binary_search_tree(aa_lt_node(val;left_subtree;right_subtree))@i
8. i > val@i
9. 
j:
. (aa_bst_member_prop(j;tp) 

 (j = i) 
 aa_bst_member_prop(j;right_subtree))@i
10. j : 
@i
11. (j = i) 
 aa_bst_member_prop(j;aa_lt_node(val;left_subtree;right_subtree))@i
12. aa_bst_member_prop(j;tp) 
 ((j = i) 
 aa_bst_member_prop(j;right_subtree))
13. aa_bst_member_prop(j;tp) 
 (j = i) 
 aa_bst_member_prop(j;right_subtree)
14. j = i
 aa_bst_member_prop(j;aa_lt_node(val;left_subtree;tp))
2
1. left_subtree : aa_ltree(
)@i
2. right_subtree : aa_ltree(
)@i
3. tp : aa_ltree(
)@i
4. val : 
@i
5. i : 
@i
6. aa_binary_search_tree(tp)@i
7. aa_binary_search_tree(aa_lt_node(val;left_subtree;right_subtree))@i
8. i > val@i
9. 
j:
. (aa_bst_member_prop(j;tp) 

 (j = i) 
 aa_bst_member_prop(j;right_subtree))@i
10. j : 
@i
11. (j = i) 
 aa_bst_member_prop(j;aa_lt_node(val;left_subtree;right_subtree))@i
12. aa_bst_member_prop(j;tp) 
 ((j = i) 
 aa_bst_member_prop(j;right_subtree))
13. aa_bst_member_prop(j;tp) 
 (j = i) 
 aa_bst_member_prop(j;right_subtree)
14. 
(j = i)
 aa_bst_member_prop(j;aa_lt_node(val;left_subtree;tp))
1.  left$_{subtree}$  :  aa\_ltree(\mBbbZ{})@i
2.  right$_{subtree}$  :  aa\_ltree(\mBbbZ{})@i
3.  tp  :  aa\_ltree(\mBbbZ{})@i
4.  val  :  \mBbbZ{}@i
5.  i  :  \mBbbZ{}@i
6.  aa\_binary\_search\_tree(tp)@i
7.  aa\_binary\_search\_tree(aa\_lt\_node(val;left$_{subtree}$;right$_{sub\000Ctree}$))@i
8.  i  >  val@i
9.  \mforall{}j:\mBbbZ{}.  (aa\_bst\_member\_prop(j;tp)  \mLeftarrow{}{}\mRightarrow{}  (j  =  i)  \mvee{}  aa\_bst\_member\_prop(j;right$_{subtree\mbackslash{}ff\000C7d$))@i
10.  j  :  \mBbbZ{}@i
11.  (j  =  i)  \mvee{}  aa\_bst\_member\_prop(j;aa\_lt\_node(val;left$_{subtree}$;right$\mbackslash{}ff\000C5f{subtree}$))@i
\mvdash{}  aa\_bst\_member\_prop(j;aa\_lt\_node(val;left$_{subtree}$;tp))
By
InstHyp  [\mkleeneopen{}j\mkleeneclose{}]  9    THEN  D  (-1)  THEN  Auto'  THEN  BoolCase  \mkleeneopen{}(j  =\msubz{}  i)\mkleeneclose{}  THEN  Auto'\mcdot{}
Home
Index