Step
*
2
2
of Lemma
aa_bst_insert_sublemma_right
1. left_subtree : aa_ltree(
)@i
2. right_subtree : aa_ltree(
)@i
3. tp : aa_ltree(
)@i
4. val : 
@i
5. i : 
@i
6. aa_binary_search_tree(tp)@i
7. aa_binary_search_tree(aa_lt_node(val;left_subtree;right_subtree))@i
8. i > val@i
9. 
j:
. (aa_bst_member_prop(j;tp) 

 (j = i) 
 aa_bst_member_prop(j;right_subtree))@i
10. j : 
@i
11. (j = i) 
 aa_bst_member_prop(j;aa_lt_node(val;left_subtree;right_subtree))@i
12. aa_bst_member_prop(j;tp) 
 ((j = i) 
 aa_bst_member_prop(j;right_subtree))
13. aa_bst_member_prop(j;tp) 
 (j = i) 
 aa_bst_member_prop(j;right_subtree)
14. 
(j = i)
 aa_bst_member_prop(j;aa_lt_node(val;left_subtree;tp))
BY
{ D 11 THEN Auto' THEN (((Unfold `aa_bst_member_prop` 11 THEN Reduce 11
) THEN D 11) THEN Auto')
 }
1
1. left_subtree : aa_ltree(
)@i
2. right_subtree : aa_ltree(
)@i
3. tp : aa_ltree(
)@i
4. val : 
@i
5. i : 
@i
6. aa_binary_search_tree(tp)@i
7. aa_binary_search_tree(aa_lt_node(val;left_subtree;right_subtree))@i
8. i > val@i
9. 
j:
. (aa_bst_member_prop(j;tp) 

 (j = i) 
 aa_bst_member_prop(j;right_subtree))@i
10. j : 
@i
11. val = j@i
12. aa_bst_member_prop(j;tp) 
 ((j = i) 
 aa_bst_member_prop(j;right_subtree))
13. aa_bst_member_prop(j;tp) 
 (j = i) 
 aa_bst_member_prop(j;right_subtree)
14. 
(j = i)
 aa_bst_member_prop(j;aa_lt_node(val;left_subtree;tp))
2
1. left_subtree : aa_ltree(
)@i
2. right_subtree : aa_ltree(
)@i
3. tp : aa_ltree(
)@i
4. val : 
@i
5. i : 
@i
6. aa_binary_search_tree(tp)@i
7. aa_binary_search_tree(aa_lt_node(val;left_subtree;right_subtree))@i
8. i > val@i
9. 
j:
. (aa_bst_member_prop(j;tp) 

 (j = i) 
 aa_bst_member_prop(j;right_subtree))@i
10. j : 
@i
11. ((j < val)
 aa_ltree_ind(left_subtree;False;val,left_subtree,right_subtree,rec1,rec2.(val = j)
  
 ((j < val) 
 rec1)
  
 ((val < j) 
 rec2)))
 ((val < j)
  
 aa_ltree_ind(right_subtree;False;val,left_subtree,right_subtree,rec1,rec2.(val = j)
    
 ((j < val) 
 rec1)
    
 ((val < j) 
 rec2)))@i
12. aa_bst_member_prop(j;tp) 
 ((j = i) 
 aa_bst_member_prop(j;right_subtree))
13. aa_bst_member_prop(j;tp) 
 (j = i) 
 aa_bst_member_prop(j;right_subtree)
14. 
(j = i)
 aa_bst_member_prop(j;aa_lt_node(val;left_subtree;tp))
1.  left$_{subtree}$  :  aa\_ltree(\mBbbZ{})@i
2.  right$_{subtree}$  :  aa\_ltree(\mBbbZ{})@i
3.  tp  :  aa\_ltree(\mBbbZ{})@i
4.  val  :  \mBbbZ{}@i
5.  i  :  \mBbbZ{}@i
6.  aa\_binary\_search\_tree(tp)@i
7.  aa\_binary\_search\_tree(aa\_lt\_node(val;left$_{subtree}$;right$_{sub\000Ctree}$))@i
8.  i  >  val@i
9.  \mforall{}j:\mBbbZ{}.  (aa\_bst\_member\_prop(j;tp)  \mLeftarrow{}{}\mRightarrow{}  (j  =  i)  \mvee{}  aa\_bst\_member\_prop(j;right$_{subtree\mbackslash{}ff\000C7d$))@i
10.  j  :  \mBbbZ{}@i
11.  (j  =  i)  \mvee{}  aa\_bst\_member\_prop(j;aa\_lt\_node(val;left$_{subtree}$;right$\mbackslash{}ff\000C5f{subtree}$))@i
12.  aa\_bst\_member\_prop(j;tp)  {}\mRightarrow{}  ((j  =  i)  \mvee{}  aa\_bst\_member\_prop(j;right$_{subtree}\mbackslash{}ff2\000C4))
13.  aa\_bst\_member\_prop(j;tp)  \mLeftarrow{}{}  (j  =  i)  \mvee{}  aa\_bst\_member\_prop(j;right$_{subtree}$\000C)
14.  \mneg{}(j  =  i)
\mvdash{}  aa\_bst\_member\_prop(j;aa\_lt\_node(val;left$_{subtree}$;tp))
By
D  11  THEN  Auto'  THEN  (((Unfold  `aa\_bst\_member\_prop`  11  THEN  Reduce  11\mcdot{})  THEN  D  11)  THEN  Auto')\mcdot{}
Home
Index