Nuprl Lemma : pi_term_ind_wf
∀[A:Type]. ∀[R:A ⟶ pi_term() ⟶ ℙ]. ∀[v:pi_term()]. ∀[zero:{x:A| R[x;pizero()]} ]. ∀[comm:pre:pi_prefix()
                                                                                          ⟶ body:pi_term()
                                                                                          ⟶ {x:A| R[x;body]} 
                                                                                          ⟶ {x:A| 
                                                                                              R[x;picomm(pre;body)]} ].
∀[option:left:pi_term()
         ⟶ right:pi_term()
         ⟶ {x:A| R[x;left]} 
         ⟶ {x:A| R[x;right]} 
         ⟶ {x:A| R[x;pioption(left;right)]} ]. ∀[par:left:pi_term()
                                                     ⟶ right:pi_term()
                                                     ⟶ {x:A| R[x;left]} 
                                                     ⟶ {x:A| R[x;right]} 
                                                     ⟶ {x:A| R[x;pipar(left;right)]} ]. ∀[rep:body:pi_term()
                                                                                              ⟶ {x:A| R[x;body]} 
                                                                                              ⟶ {x:A| 
                                                                                                  R[x;pirep(body)]} ].
∀[new:name:Name ⟶ body:pi_term() ⟶ {x:A| R[x;body]}  ⟶ {x:A| R[x;pinew(name;body)]} ].
  (... ∈ {x:A| R[x;v]} )
Proof
Definitions occuring in Statement : 
pi_term_ind: pi_term_ind(v;zero;pre,body,rec1....;left,right,rec2,rec3....;left,right,rec4,rec5....;body,rec6....;name,body,rec7....), 
pinew: pinew(name;body), 
pirep: pirep(body), 
pipar: pipar(left;right), 
pioption: pioption(left;right), 
picomm: picomm(pre;body), 
pizero: pizero(), 
pi_term: pi_term(), 
pi_prefix: pi_prefix(), 
name: Name, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2;s3;s4], 
so_apply: x[s1;s2;s3], 
so_apply: x[s1;s2], 
member: t ∈ T, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
pi_term_ind: pi_term_ind(v;zero;pre,body,rec1....;left,right,rec2,rec3....;left,right,rec4,rec5....;body,rec6....;name,body,rec7....), 
so_apply: x[s1;s2;s3], 
so_apply: x[s1;s2], 
so_apply: x[s1;s2;s3;s4], 
pi_term-definition, 
pi_term-induction, 
uniform-comp-nat-induction, 
pi_term-ext, 
eq_atom: x =a y, 
bool_cases_sqequal, 
eqff_to_assert, 
any: any x, 
btrue: tt, 
bfalse: ff, 
it: ⋅, 
top: Top, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
strict4: strict4(F), 
and: P ∧ Q, 
prop: ℙ, 
guard: {T}, 
or: P ∨ Q, 
squash: ↓T, 
subtype_rel: A ⊆r B
Latex:
\mforall{}[A:Type].  \mforall{}[R:A  {}\mrightarrow{}  pi\_term()  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[v:pi\_term()].  \mforall{}[zero:\{x:A|  R[x;pizero()]\}  ].
\mforall{}[comm:pre:pi\_prefix()  {}\mrightarrow{}  body:pi\_term()  {}\mrightarrow{}  \{x:A|  R[x;body]\}    {}\mrightarrow{}  \{x:A|  R[x;picomm(pre;body)]\}  ].
\mforall{}[option:left:pi\_term()
                  {}\mrightarrow{}  right:pi\_term()
                  {}\mrightarrow{}  \{x:A|  R[x;left]\} 
                  {}\mrightarrow{}  \{x:A|  R[x;right]\} 
                  {}\mrightarrow{}  \{x:A|  R[x;pioption(left;right)]\}  ].  \mforall{}[par:left:pi\_term()
                                                                                                          {}\mrightarrow{}  right:pi\_term()
                                                                                                          {}\mrightarrow{}  \{x:A|  R[x;left]\} 
                                                                                                          {}\mrightarrow{}  \{x:A|  R[x;right]\} 
                                                                                                          {}\mrightarrow{}  \{x:A|  R[x;pipar(left;right)]\}  ].
\mforall{}[rep:body:pi\_term()  {}\mrightarrow{}  \{x:A|  R[x;body]\}    {}\mrightarrow{}  \{x:A|  R[x;pirep(body)]\}  ].
\mforall{}[new:name:Name  {}\mrightarrow{}  body:pi\_term()  {}\mrightarrow{}  \{x:A|  R[x;body]\}    {}\mrightarrow{}  \{x:A|  R[x;pinew(name;body)]\}  ].
    (...  \mmember{}  \{x:A|  R[x;v]\}  )
Date html generated:
2016_05_17-AM-11_22_45
Last ObjectModification:
2016_01_18-AM-07_51_02
Theory : event-logic-applications
Home
Index