Nuprl Lemma : Accum-class_wf
∀[Info,B,A:Type]. ∀[f:A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)]. ∀[X:EClass(A)].  (Accum-class(f;init;X) ∈ EClass(B))
Proof
Definitions occuring in Statement : 
Accum-class: Accum-class(f;init;X)
, 
eclass: EClass(A[eo; e])
, 
Id: Id
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
bag: bag(T)
Lemmas : 
rec-combined-class-opt-1_wf, 
lifting-2_wf, 
eclass_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
Id_wf, 
bag_wf
Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].
    (Accum-class(f;init;X)  \mmember{}  EClass(B))
Date html generated:
2015_07_22-PM-00_11_10
Last ObjectModification:
2015_01_28-AM-11_40_21
Home
Index