Nuprl Lemma : lifting-2_wf

[C,B,A:Type]. ∀[f:A ⟶ B ⟶ C].  (lifting-2(f) ∈ bag(A) ⟶ bag(B) ⟶ bag(C))


Proof




Definitions occuring in Statement :  lifting-2: lifting-2(f) bag: bag(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lifting-2: lifting-2(f)
Lemmas referenced :  lifting2_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[C,B,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].    (lifting-2(f)  \mmember{}  bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C))



Date html generated: 2016_05_15-PM-03_01_59
Last ObjectModification: 2015_12_27-AM-09_28_17

Theory : bags


Home Index