Step
*
1
of Lemma
State-class-es-sv
1. Info : Type
2. A : Type
3. es : EO+(Info)
4. f : Top
5. X : EClass(A)
6. init : Id ─→ bag(Top)
7. es-sv-class(es;X)
8. ∀l:Id. (#(init l) ≤ 1)
⊢ es-sv-class(es;State-class(init;f;X))
BY
{ (RepUR ``State-class es-sv-class simple-comb-2 simple-comb`` 0 THEN Auto THEN (SplitOnConclITE THENA MaAuto)) }
1
.....truecase.....
1. Info : Type
2. A : Type
3. es : EO+(Info)
4. f : Top
5. X : EClass(A)
6. init : Id ─→ bag(Top)
7. es-sv-class(es;X)
8. ∀l:Id. (#(init l) ≤ 1)
9. e : E@i
10. (X es e) = {} ∈ bag(A)
⊢ #(Memory-class(f;init;X) es e) ≤ 1
2
.....falsecase.....
1. Info : Type
2. A : Type
3. es : EO+(Info)
4. f : Top
5. X : EClass(A)
6. init : Id ─→ bag(Top)
7. es-sv-class(es;X)
8. ∀l:Id. (#(init l) ≤ 1)
9. e : E@i
10. ¬((X es e) = {} ∈ bag(A))
⊢ #(lifting-2(f) (X es e) (Memory-class(f;init;X) es e)) ≤ 1
Latex:
Latex:
1. Info : Type
2. A : Type
3. es : EO+(Info)
4. f : Top
5. X : EClass(A)
6. init : Id {}\mrightarrow{} bag(Top)
7. es-sv-class(es;X)
8. \mforall{}l:Id. (\#(init l) \mleq{} 1)
\mvdash{} es-sv-class(es;State-class(init;f;X))
By
Latex:
(RepUR ``State-class es-sv-class simple-comb-2 simple-comb`` 0
THEN Auto
THEN (SplitOnConclITE THENA MaAuto))
Home
Index