Nuprl Lemma : State-class-single-val0

[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[f:A ─→ B ─→ B]. ∀[X:EClass(A)]. ∀[init:Id ─→ bag(B)]. ∀[e:E]. ∀[v1,v2:B].
  (v1 v2 ∈ B) supposing 
     (v1 ∈ State-class(init;f;X)(e) and 
     v2 ∈ State-class(init;f;X)(e) and 
     single-valued-bag(init loc(e);B) and 
     single-valued-classrel(es;X;A))


Proof




Definitions occuring in Statement :  State-class: State-class(init;f;X) single-valued-classrel: single-valued-classrel(es;X;T) classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) es-E: E Id: Id uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T single-valued-bag: single-valued-bag(b;T) bag: bag(T)
Lemmas :  State-classrel iterated_classrel-single-val classrel_wf State-class_wf single-valued-bag_wf es-loc_wf event-ordering+_subtype single-valued-classrel_wf es-E_wf Id_wf bag_wf eclass_wf event-ordering+_wf

Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[X:EClass(A)].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[e:E].
\mforall{}[v1,v2:B].
    (v1  =  v2)  supposing 
          (v1  \mmember{}  State-class(init;f;X)(e)  and 
          v2  \mmember{}  State-class(init;f;X)(e)  and 
          single-valued-bag(init  loc(e);B)  and 
          single-valued-classrel(es;X;A))



Date html generated: 2015_07_22-PM-00_20_23
Last ObjectModification: 2015_01_28-AM-10_13_14

Home Index