Nuprl Lemma : single-valued-bag_wf
∀[T:Type]. ∀[b:bag(T)].  (single-valued-bag(b;T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
single-valued-bag: single-valued-bag(b;T)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
single-valued-bag: single-valued-bag(b;T)
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
bag-member_wf, 
equal_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
functionEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].    (single-valued-bag(b;T)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-02_42_20
Last ObjectModification:
2015_12_27-AM-09_39_47
Theory : bags
Home
Index