Nuprl Lemma : single-valued-bag_wf

[T:Type]. ∀[b:bag(T)].  (single-valued-bag(b;T) ∈ ℙ)


Proof




Definitions occuring in Statement :  single-valued-bag: single-valued-bag(b;T) bag: bag(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T single-valued-bag: single-valued-bag(b;T) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  all_wf bag-member_wf equal_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality functionEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].    (single-valued-bag(b;T)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-02_42_20
Last ObjectModification: 2015_12_27-AM-09_39_47

Theory : bags


Home Index