Nuprl Lemma : bag-member_wf
∀[T:Type]. ∀[x:T]. ∀[bs:bag(T)].  (x ↓∈ bs ∈ ℙ)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-member: x ↓∈ bs
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s]
Lemmas referenced : 
squash_wf, 
exists_wf, 
list_wf, 
equal_wf, 
bag_wf, 
list-subtype-bag, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
productEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].    (x  \mdownarrow{}\mmember{}  bs  \mmember{}  \mBbbP{})
Date html generated:
2018_05_21-PM-06_24_48
Last ObjectModification:
2018_03_23-PM-01_22_22
Theory : bags
Home
Index