Nuprl Lemma : bag-member_wf

[T:Type]. ∀[x:T]. ∀[bs:bag(T)].  (x ↓∈ bs ∈ ℙ)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-member: x ↓∈ bs so_lambda: λ2x.t[x] prop: and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s]
Lemmas referenced :  squash_wf exists_wf list_wf equal_wf bag_wf list-subtype-bag l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality productEquality applyEquality because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].    (x  \mdownarrow{}\mmember{}  bs  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-06_24_48
Last ObjectModification: 2018_03_23-PM-01_22_22

Theory : bags


Home Index