Step
*
2
2
1
of Lemma
State-comb-classrel-class
.....truecase.....
1. Info : Type
2. B : Type
3. A : Type
4. f : A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. ∀e':E. ((e' < e)
⇒ (∀v:B. (v ∈ State-comb(init;f;X)(e')
⇐⇒ v ∈ State-class(init;f;X)(e'))))
10. v : B@i
11. z : B
12. z ↓∈ init loc(e)
13. (∃a:A. (a ∈ X(e) ∧ (v = (f a z) ∈ B))) ∨ ((∀a:A. (¬a ∈ X(e))) ∧ (v = z ∈ B))
14. ¬((X es e) = {} ∈ bag(A))
15. x : A
16. x ∈ X(e)
17. ↑first(e)
⊢ ↓∃a:A. ∃b:B. (a ∈ X(e) ∧ b ∈ Prior(State-comb(init;f;X))?init(e) ∧ (v = (f a b) ∈ B))
BY
{ (D (-5)
THEN ExRepD
THEN Try (Complete ((InstHyp [⌈x⌉] (-6)⋅ THEN Auto)))
THEN D 0
THEN InstConcl [⌈a⌉;⌈z⌉]⋅
THEN Auto
THEN MaUseClassRel 0
THEN D 0
THEN OrRight
THEN Auto) }
Latex:
Latex:
.....truecase.....
1. Info : Type
2. B : Type
3. A : Type
4. f : A {}\mrightarrow{} B {}\mrightarrow{} B
5. init : Id {}\mrightarrow{} bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. \mforall{}e':E. ((e' < e) {}\mRightarrow{} (\mforall{}v:B. (v \mmember{} State-comb(init;f;X)(e') \mLeftarrow{}{}\mRightarrow{} v \mmember{} State-class(init;f;X)(e'))))
10. v : B@i
11. z : B
12. z \mdownarrow{}\mmember{} init loc(e)
13. (\mexists{}a:A. (a \mmember{} X(e) \mwedge{} (v = (f a z)))) \mvee{} ((\mforall{}a:A. (\mneg{}a \mmember{} X(e))) \mwedge{} (v = z))
14. \mneg{}((X es e) = \{\})
15. x : A
16. x \mmember{} X(e)
17. \muparrow{}first(e)
\mvdash{} \mdownarrow{}\mexists{}a:A. \mexists{}b:B. (a \mmember{} X(e) \mwedge{} b \mmember{} Prior(State-comb(init;f;X))?init(e) \mwedge{} (v = (f a b)))
By
Latex:
(D (-5)
THEN ExRepD
THEN Try (Complete ((InstHyp [\mkleeneopen{}x\mkleeneclose{}] (-6)\mcdot{} THEN Auto)))
THEN D 0
THEN InstConcl [\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}z\mkleeneclose{}]\mcdot{}
THEN Auto
THEN MaUseClassRel 0
THEN D 0
THEN OrRight
THEN Auto)
Home
Index