Step
*
of Lemma
State-loc-comb-classrel-mem2
∀[Info,B,A:Type]. ∀[f:Id ─→ A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)].
∀X:EClass(A). ∀es:EO+(Info). ∀e:E.
∀[v:B]
(v ∈ State-loc-comb(init;f;X)(e)
⇐⇒ if e ∈b X
then ↓∃w:B. ∃a:A. (w ∈ Memory-loc-class(f;init;X)(e) ∧ (v = (f loc(e) a w) ∈ B) ∧ a ∈ X(e))
else v ∈ Memory-loc-class(f;init;X)(e)
fi )
BY
{ (UnivCD THEN Auto) }
1
1. Info : Type
2. B : Type
3. A : Type
4. f : Id ─→ A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. v : B
10. v ∈ State-loc-comb(init;f;X)(e)@i
⊢ if e ∈b X
then ↓∃w:B. ∃a:A. (w ∈ Memory-loc-class(f;init;X)(e) ∧ (v = (f loc(e) a w) ∈ B) ∧ a ∈ X(e))
else v ∈ Memory-loc-class(f;init;X)(e)
fi
2
1. Info : Type
2. B : Type
3. A : Type
4. f : Id ─→ A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. v : B
10. if e ∈b X
then ↓∃w:B. ∃a:A. (w ∈ Memory-loc-class(f;init;X)(e) ∧ (v = (f loc(e) a w) ∈ B) ∧ a ∈ X(e))
else v ∈ Memory-loc-class(f;init;X)(e)
fi @i
⊢ v ∈ State-loc-comb(init;f;X)(e)
Latex:
Latex:
\mforall{}[Info,B,A:Type]. \mforall{}[f:Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} B]. \mforall{}[init:Id {}\mrightarrow{} bag(B)].
\mforall{}X:EClass(A). \mforall{}es:EO+(Info). \mforall{}e:E.
\mforall{}[v:B]
(v \mmember{} State-loc-comb(init;f;X)(e)
\mLeftarrow{}{}\mRightarrow{} if e \mmember{}\msubb{} X
then \mdownarrow{}\mexists{}w:B. \mexists{}a:A. (w \mmember{} Memory-loc-class(f;init;X)(e) \mwedge{} (v = (f loc(e) a w)) \mwedge{} a \mmember{} X(e))
else v \mmember{} Memory-loc-class(f;init;X)(e)
fi )
By
Latex:
(UnivCD THEN Auto)
Home
Index