Step
*
3
of Lemma
State-loc-comb-invariant-sv2
1. [Info] : Type
2. [A] : Type
3. [S] : Type
4. es : EO+(Info)@i'
5. P : E ─→ S ─→ ℙ@i'
6. init : Id ─→ bag(S)@i
7. f : Id ─→ A ─→ S ─→ S@i
8. X : EClass(A)@i'
9. e : E@i
10. v : S@i
11. single-valued-bag(init loc(e);S)@i
12. single-valued-classrel(es;X;A)@i
13. ∀s:S. ∀e':E.
(e' ≤loc e
⇒ if first(e') then s ↓∈ init loc(e') else s ∈ State-loc-comb(init;f;X)(pred(e')) ∧ P[pred(e');s] fi
⇒ if e' ∈b X then ∀a:A. (a ∈ X(e')
⇒ P[e';f loc(e') a s]) else P[e';s] fi )@i
14. v ∈ State-loc-comb(init;f;X)(e)@i
15. P[e;v]
⊢ P[e;v]
BY
{ Auto }
Latex:
Latex:
1. [Info] : Type
2. [A] : Type
3. [S] : Type
4. es : EO+(Info)@i'
5. P : E {}\mrightarrow{} S {}\mrightarrow{} \mBbbP{}@i'
6. init : Id {}\mrightarrow{} bag(S)@i
7. f : Id {}\mrightarrow{} A {}\mrightarrow{} S {}\mrightarrow{} S@i
8. X : EClass(A)@i'
9. e : E@i
10. v : S@i
11. single-valued-bag(init loc(e);S)@i
12. single-valued-classrel(es;X;A)@i
13. \mforall{}s:S. \mforall{}e':E.
(e' \mleq{}loc e
{}\mRightarrow{} if first(e')
then s \mdownarrow{}\mmember{} init loc(e')
else s \mmember{} State-loc-comb(init;f;X)(pred(e')) \mwedge{} P[pred(e');s]
fi
{}\mRightarrow{} if e' \mmember{}\msubb{} X then \mforall{}a:A. (a \mmember{} X(e') {}\mRightarrow{} P[e';f loc(e') a s]) else P[e';s] fi )@i
14. v \mmember{} State-loc-comb(init;f;X)(e)@i
15. P[e;v]
\mvdash{} P[e;v]
By
Latex:
Auto
Home
Index