Nuprl Lemma : State-loc-comb-invariant-sv2

[Info,A,S:Type].
  ∀es:EO+(Info). ∀P:E ─→ S ─→ ℙ. ∀init:Id ─→ bag(S). ∀f:Id ─→ A ─→ S ─→ S. ∀X:EClass(A). ∀e:E. ∀v:S.
    (single-valued-bag(init loc(e);S)
     single-valued-classrel(es;X;A)
     (∀s:S. ∀e':E.
          (e' ≤loc 
           if first(e') then s ↓∈ init loc(e') else s ∈ State-loc-comb(init;f;X)(pred(e')) ∧ P[pred(e');s] fi 
           if e' ∈b then ∀a:A. (a ∈ X(e')  P[e';f loc(e') s]) else P[e';s] fi ))
     v ∈ State-loc-comb(init;f;X)(e)
     P[e;v])


Proof




Definitions occuring in Statement :  State-loc-comb: State-loc-comb(init;f;X) single-valued-classrel: single-valued-classrel(es;X;T) classrel: v ∈ X(e) member-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e ≤loc e'  es-first: first(e) es-pred: pred(e) es-loc: loc(e) es-E: E Id: Id ifthenelse: if then else fi  uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type single-valued-bag: single-valued-bag(b;T) bag-member: x ↓∈ bs bag: bag(T)
Lemmas :  member-eclass_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bool_cases es-first_wf2 event-ordering+_subtype assert_of_bnot State-loc-comb-classrel2 es-pred_wf es-le-loc es-loc-pred and_wf Id_wf iterated-classrel_wf bag-member_wf es-loc_wf sq_stable__single-valued-iterated-classrel

Latex:
\mforall{}[Info,A,S:Type].
    \mforall{}es:EO+(Info).  \mforall{}P:E  {}\mrightarrow{}  S  {}\mrightarrow{}  \mBbbP{}.  \mforall{}init:Id  {}\mrightarrow{}  bag(S).  \mforall{}f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  S  {}\mrightarrow{}  S.  \mforall{}X:EClass(A).  \mforall{}e:E.  \mforall{}v:S.
        (single-valued-bag(init  loc(e);S)
        {}\mRightarrow{}  single-valued-classrel(es;X;A)
        {}\mRightarrow{}  (\mforall{}s:S.  \mforall{}e':E.
                    (e'  \mleq{}loc  e 
                    {}\mRightarrow{}  if  first(e')
                          then  s  \mdownarrow{}\mmember{}  init  loc(e')
                          else  s  \mmember{}  State-loc-comb(init;f;X)(pred(e'))  \mwedge{}  P[pred(e');s]
                          fi 
                    {}\mRightarrow{}  if  e'  \mmember{}\msubb{}  X  then  \mforall{}a:A.  (a  \mmember{}  X(e')  {}\mRightarrow{}  P[e';f  loc(e')  a  s])  else  P[e';s]  fi  ))
        {}\mRightarrow{}  v  \mmember{}  State-loc-comb(init;f;X)(e)
        {}\mRightarrow{}  P[e;v])



Date html generated: 2015_07_22-PM-00_24_38
Last ObjectModification: 2015_01_28-AM-10_10_37

Home Index