Nuprl Lemma : concat-lifting-loc-gen_wf

[B:Type]. ∀[n:ℕ]. ∀[A:ℕn ─→ Type]. ∀[f:Id ─→ funtype(n;A;bag(B))].
  (concat-lifting-loc-gen(n;f) ∈ Id ─→ (k:ℕn ─→ bag(A k)) ─→ bag(B))


Proof




Definitions occuring in Statement :  concat-lifting-loc-gen: concat-lifting-loc-gen(n;f) Id: Id int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ─→ B[x] natural_number: $n universe: Type bag: bag(T) funtype: funtype(n;A;T)
Lemmas :  concat-lifting-loc_wf int_seg_wf bag_wf Id_wf funtype_wf nat_wf

Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[f:Id  {}\mrightarrow{}  funtype(n;A;bag(B))].
    (concat-lifting-loc-gen(n;f)  \mmember{}  Id  {}\mrightarrow{}  (k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k))  {}\mrightarrow{}  bag(B))



Date html generated: 2015_07_22-PM-00_08_03
Last ObjectModification: 2015_01_28-AM-11_42_01

Home Index