Nuprl Lemma : disjoint-union-comb-es-sv

[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
  (es-sv-class(es;X (+) Y)) supposing (disjoint-classrel(es;A;X;B;Y) and es-sv-class(es;Y) and es-sv-class(es;X))


Proof




Definitions occuring in Statement :  disjoint-union-comb: (+) Y es-sv-class: es-sv-class(es;X) disjoint-classrel: disjoint-classrel(es;A;X;B;Y) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Lemmas :  parallel-class-es-sv simple-comb-1_wf lifting-1_wf simple-comb-1-es-sv disjoint-classrel_wf es-sv-class_wf eclass_wf es-E_wf event-ordering+_subtype event-ordering+_wf disjoint-classrel-symm simple-comb-1-disjoint-classrel

Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    (es-sv-class(es;X  (+)  Y))  supposing 
          (disjoint-classrel(es;A;X;B;Y)  and 
          es-sv-class(es;Y)  and 
          es-sv-class(es;X))



Date html generated: 2015_07_22-PM-00_19_42
Last ObjectModification: 2015_01_28-AM-10_42_16

Home Index