Nuprl Lemma : disjoint-union-comb-es-sv
∀[Info,A,B:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
  (es-sv-class(es;X (+) Y)) supposing (disjoint-classrel(es;A;X;B;Y) and es-sv-class(es;Y) and es-sv-class(es;X))
Proof
Definitions occuring in Statement : 
disjoint-union-comb: X (+) Y
, 
es-sv-class: es-sv-class(es;X)
, 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Lemmas : 
parallel-class-es-sv, 
simple-comb-1_wf, 
lifting-1_wf, 
simple-comb-1-es-sv, 
disjoint-classrel_wf, 
es-sv-class_wf, 
eclass_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
disjoint-classrel-symm, 
simple-comb-1-disjoint-classrel
Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    (es-sv-class(es;X  (+)  Y))  supposing 
          (disjoint-classrel(es;A;X;B;Y)  and 
          es-sv-class(es;Y)  and 
          es-sv-class(es;X))
Date html generated:
2015_07_22-PM-00_19_42
Last ObjectModification:
2015_01_28-AM-10_42_16
Home
Index