Nuprl Lemma : simple-comb-1-disjoint-classrel
∀[Info,T,A,B:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[f:A ─→ T].
  (disjoint-classrel(es;A;X;B;Y) ⇒ disjoint-classrel(es;T;lifting-1(f)|X|;B;Y))
Proof
Definitions occuring in Statement : 
simple-comb-1: F|X|, 
disjoint-classrel: disjoint-classrel(es;A;X;B;Y), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
function: x:A ─→ B[x], 
universe: Type, 
lifting-1: lifting-1(f)
Lemmas : 
simple-comb-1-classrel, 
all_wf, 
not_wf, 
classrel_wf, 
simple-comb-1_wf, 
lifting-1_wf, 
es-E_wf, 
event-ordering+_subtype, 
disjoint-classrel_wf, 
eclass_wf, 
event-ordering+_wf
Latex:
\mforall{}[Info,T,A,B:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[f:A  {}\mrightarrow{}  T].
    (disjoint-classrel(es;A;X;B;Y)  {}\mRightarrow{}  disjoint-classrel(es;T;lifting-1(f)|X|;B;Y))
Date html generated:
2015_07_22-PM-00_19_09
Last ObjectModification:
2015_01_28-AM-10_43_26
Home
Index