Nuprl Lemma : lifting-1_wf

[A,B:Type]. ∀[f:A ⟶ B].  (lifting-1(f) ∈ bag(A) ⟶ bag(B))


Proof




Definitions occuring in Statement :  lifting-1: lifting-1(f) bag: bag(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T lifting-1: lifting-1(f)
Lemmas referenced :  lifting1_wf bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].    (lifting-1(f)  \mmember{}  bag(A)  {}\mrightarrow{}  bag(B))



Date html generated: 2016_05_15-PM-03_01_26
Last ObjectModification: 2015_12_27-AM-09_28_33

Theory : bags


Home Index