Step
*
2
of Lemma
es-local-pred-iff-es-p-local-pred
1. Info : Type
2. T : Type
3. X : EClass(T)@i'
4. es : EO+(Info)@i'
5. e : E@i
6. e' : E@i
7. es-p-local-pred(es;λe'.inhabited-classrel(es;T;X;e')) e e'
⊢ (last(λe'.0 <z #(X es e')) e) = (inl e') ∈ (E + Top)
BY
{ (RepeatFor 3 (MoveToConcl (-1))
THEN CausalInd'
THEN (UnivCD THENA Auto)
THEN RecUnfold `es-local-pred` 0
THEN Reduce 0) }
1
1. Info : Type
2. T : Type
3. X : EClass(T)@i'
4. es : EO+(Info)@i'
5. e : E@i
6. ∀e1:E
((e1 < e)
⇒ (∀e':E
((es-p-local-pred(es;λe'.inhabited-classrel(es;T;X;e')) e1 e')
⇒ ((last(λe'.0 <z #(X es e')) e1) = (inl e') ∈ (E + Top)))))
7. e' : E@i
8. es-p-local-pred(es;λe'.inhabited-classrel(es;T;X;e')) e e'@i
⊢ if first(e) then inr (λx.⋅)
if 0 <z #(X es pred(e)) then inl pred(e)
else last(λe'.0 <z #(X es e')) pred(e)
fi
= (inl e')
∈ (E + Top)
Latex:
Latex:
1. Info : Type
2. T : Type
3. X : EClass(T)@i'
4. es : EO+(Info)@i'
5. e : E@i
6. e' : E@i
7. es-p-local-pred(es;\mlambda{}e'.inhabited-classrel(es;T;X;e')) e e'
\mvdash{} (last(\mlambda{}e'.0 <z \#(X es e')) e) = (inl e')
By
Latex:
(RepeatFor 3 (MoveToConcl (-1))
THEN CausalInd'
THEN (UnivCD THENA Auto)
THEN RecUnfold `es-local-pred` 0
THEN Reduce 0)
Home
Index