Step
*
of Lemma
parallel-bag-classrel
∀[B,Info,T:Type]. ∀[X:T ─→ EClass(B)]. ∀[as:bag(T)]. ∀[v:B]. ∀[es:EO+(Info)]. ∀[e:E].
uiff(v ∈ (||a∈as.X[a])(e);↓∃a:T. (a ↓∈ as ∧ v ∈ X[a](e)))
BY
{ (Intros⋅
THEN Unfold `parallel-bag-class` 0
THEN ((RWO "bind-class-rel" 0 THENA Auto)
THEN (RWO "return-loc-bag-class-classrel" 0 THENA Auto)
THEN Reduce 0
THEN Auto)) }
1
1. B : Type
2. Info : Type
3. T : Type
4. X : T ─→ EClass(B)
5. as : bag(T)
6. v : B
7. es : EO+(Info)
8. e : E
9. ∃a:T. (a ↓∈ as ∧ v ∈ X[a](e))
⊢ ↓∃e':{e':E| e' ≤loc e } . ∃a:T. ((a ↓∈ as ∧ (↑first(e'))) ∧ v ∈ X[a](e))
Latex:
Latex:
\mforall{}[B,Info,T:Type]. \mforall{}[X:T {}\mrightarrow{} EClass(B)]. \mforall{}[as:bag(T)]. \mforall{}[v:B]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E].
uiff(v \mmember{} (||a\mmember{}as.X[a])(e);\mdownarrow{}\mexists{}a:T. (a \mdownarrow{}\mmember{} as \mwedge{} v \mmember{} X[a](e)))
By
Latex:
(Intros\mcdot{}
THEN Unfold `parallel-bag-class` 0
THEN ((RWO "bind-class-rel" 0 THENA Auto)
THEN (RWO "return-loc-bag-class-classrel" 0 THENA Auto)
THEN Reduce 0
THEN Auto))
Home
Index