Step
*
2
of Lemma
rec-comb-classrel
1. Info : Type
2. B : Type
3. n : ℕ
4. A : ℕn ─→ Type
5. Xs : k:ℕn ─→ EClass(A k)
6. f : Id ─→ (k:ℕn ─→ (A k)) ─→ B ─→ B
7. F : Id ─→ (k:ℕn ─→ bag(A k)) ─→ bag(B) ─→ bag(B)
8. init : Id ─→ bag(B)
9. es : EO+(Info)
10. e : E
11. v : B
12. ∀x:Id. ∀v:B. ∀bs:k:ℕn ─→ bag(A k). ∀b:bag(B).
(v ↓∈ F x bs b
⇐⇒ ↓∃vs:k:ℕn ─→ (A k). ∃w:B. ((∀k:ℕn. vs k ↓∈ bs k) ∧ w ↓∈ b ∧ (v = (f x vs w) ∈ B)))
13. ↓∃vs:k:ℕn ─→ (A k)
∃w:B. ((∀k:ℕn. vs[k] ∈ Xs[k](e)) ∧ w ∈ Prior(rec-comb(Xs;F;init))?init(e) ∧ (v = (f loc(e) vs w) ∈ B))
⊢ v ∈ rec-comb(Xs;F;init)(e)
BY
{ TrySquashExRepD (-1) }
1
1. Info : Type
2. B : Type
3. n : ℕ
4. A : ℕn ─→ Type
5. Xs : k:ℕn ─→ EClass(A k)
6. f : Id ─→ (k:ℕn ─→ (A k)) ─→ B ─→ B
7. F : Id ─→ (k:ℕn ─→ bag(A k)) ─→ bag(B) ─→ bag(B)
8. init : Id ─→ bag(B)
9. es : EO+(Info)
10. e : E
11. v : B
12. ∀x:Id. ∀v:B. ∀bs:k:ℕn ─→ bag(A k). ∀b:bag(B).
(v ↓∈ F x bs b
⇐⇒ ↓∃vs:k:ℕn ─→ (A k). ∃w:B. ((∀k:ℕn. vs k ↓∈ bs k) ∧ w ↓∈ b ∧ (v = (f x vs w) ∈ B)))
13. vs : k:ℕn ─→ (A k)
14. w : B
15. ∀k:ℕn. vs[k] ∈ Xs[k](e)
16. w ∈ Prior(rec-comb(Xs;F;init))?init(e)
17. v = (f loc(e) vs w) ∈ B
⊢ v ∈ rec-comb(Xs;F;init)(e)
Latex:
Latex:
1. Info : Type
2. B : Type
3. n : \mBbbN{}
4. A : \mBbbN{}n {}\mrightarrow{} Type
5. Xs : k:\mBbbN{}n {}\mrightarrow{} EClass(A k)
6. f : Id {}\mrightarrow{} (k:\mBbbN{}n {}\mrightarrow{} (A k)) {}\mrightarrow{} B {}\mrightarrow{} B
7. F : Id {}\mrightarrow{} (k:\mBbbN{}n {}\mrightarrow{} bag(A k)) {}\mrightarrow{} bag(B) {}\mrightarrow{} bag(B)
8. init : Id {}\mrightarrow{} bag(B)
9. es : EO+(Info)
10. e : E
11. v : B
12. \mforall{}x:Id. \mforall{}v:B. \mforall{}bs:k:\mBbbN{}n {}\mrightarrow{} bag(A k). \mforall{}b:bag(B).
(v \mdownarrow{}\mmember{} F x bs b
\mLeftarrow{}{}\mRightarrow{} \mdownarrow{}\mexists{}vs:k:\mBbbN{}n {}\mrightarrow{} (A k). \mexists{}w:B. ((\mforall{}k:\mBbbN{}n. vs k \mdownarrow{}\mmember{} bs k) \mwedge{} w \mdownarrow{}\mmember{} b \mwedge{} (v = (f x vs w))))
13. \mdownarrow{}\mexists{}vs:k:\mBbbN{}n {}\mrightarrow{} (A k)
\mexists{}w:B
((\mforall{}k:\mBbbN{}n. vs[k] \mmember{} Xs[k](e)) \mwedge{} w \mmember{} Prior(rec-comb(Xs;F;init))?init(e) \mwedge{} (v = (f loc(e) vs w)))
\mvdash{} v \mmember{} rec-comb(Xs;F;init)(e)
By
Latex:
TrySquashExRepD (-1)
Home
Index