Nuprl Lemma : simple-comb-1-classrel-weak
∀[Info,B,C:Type]. ∀[f:B ─→ C]. ∀[X:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
  (v ∈ lifting-1(f)|X|(e) 
⇐⇒ ↓∃b:B. ((v = (f b) ∈ C) ∧ b ∈ X(e)))
Proof
Definitions occuring in Statement : 
simple-comb-1: F|X|
, 
classrel: v ∈ X(e)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
lifting-1: lifting-1(f)
Lemmas : 
simple-comb-1-classrel, 
classrel_wf, 
simple-comb-1_wf, 
lifting-1_wf, 
squash_wf, 
exists_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
eclass_wf
Latex:
\mforall{}[Info,B,C:Type].  \mforall{}[f:B  {}\mrightarrow{}  C].  \mforall{}[X:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:C].
    (v  \mmember{}  lifting-1(f)|X|(e)  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}\mexists{}b:B.  ((v  =  (f  b))  \mwedge{}  b  \mmember{}  X(e)))
Date html generated:
2015_07_22-PM-00_11_01
Last ObjectModification:
2015_01_28-AM-11_40_24
Home
Index