Nuprl Lemma : simple-loc-comb-2-classrel
∀[Info,A,B,C:Type]. ∀[f:Id ─→ A ─→ B ─→ C]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
  uiff(v ∈ lifting-loc-2(f) o (Loc,X, Y)(e);↓∃a:A. ∃b:B. (a ∈ X(e) ∧ b ∈ Y(e) ∧ (v = (f loc(e) a b) ∈ C)))
Proof
Definitions occuring in Statement : 
lifting-loc-2: lifting-loc-2(f)
, 
simple-loc-comb-2: F o (Loc,X, Y)
, 
classrel: v ∈ X(e)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-loc: loc(e)
, 
es-E: E
, 
Id: Id
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
simple-loc-comb2-classrel, 
classrel_wf, 
simple-loc-comb-2_wf, 
lifting-loc-2_wf, 
squash_wf, 
exists_wf, 
es-loc_wf, 
event-ordering+_subtype, 
es-E_wf, 
event-ordering+_wf, 
eclass_wf, 
Id_wf
Latex:
\mforall{}[Info,A,B,C:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  C].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
\mforall{}[v:C].
    uiff(v  \mmember{}  lifting-loc-2(f)  o  (Loc,X,  Y)(e);\mdownarrow{}\mexists{}a:A
                                                                                            \mexists{}b:B.  (a  \mmember{}  X(e)  \mwedge{}  b  \mmember{}  Y(e)  \mwedge{}  (v  =  (f  loc(e)  a  b))))
Date html generated:
2015_07_22-PM-00_09_01
Last ObjectModification:
2015_01_28-AM-11_41_28
Home
Index