Step * 2 2 1 of Lemma simple-loc-comb-3-concat-es-sv


1. Info Type
2. es EO+(Info)
3. Type
4. Type
5. Type
6. Id ─→ A ─→ B ─→ C ─→ bag(Top)
7. EClass(A)
8. EClass(B)
9. EClass(C)
10. ∀i:Id. ∀a:A. ∀b:B. ∀c:C.  (#(F c) ≤ 1)
11. ∀e:E. (#(X es e) ≤ 1)
12. ∀e:E. (#(Y es e) ≤ 1)
13. ∀e:E. (#(Z es e) ≤ 1)
14. E@i
15. #(X es e) ≤ 1
16. #(X es e) 1 ∈ ℤ
17. single-valued-bag(X es e;A)
18. es {only(X es e)}
19. #(Y es e) ≤ 1
20. #(Y es e) 1 ∈ ℤ
21. single-valued-bag(Y es e;B)
22. es {only(Y es e)}
23. #(Z es e) ≤ 1
24. #(Z es e) 0 ∈ ℤ
⊢ #(bag-union(∪x@1∈es e.{F loc(e) only(X es e) only(Y es e) x@1})) ≤ 1
BY
((InstLemma `bag-size-zero` [⌈C⌉;⌈es e⌉]⋅ THENA Auto)
   THEN HypSubst' (-1) 0
   THEN (RWO "bag-combine-empty-left" THENA Auto)
   THEN Reduce 0
   THEN Auto)⋅ }


Latex:



Latex:

1.  Info  :  Type
2.  es  :  EO+(Info)
3.  A  :  Type
4.  B  :  Type
5.  C  :  Type
6.  F  :  Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  C  {}\mrightarrow{}  bag(Top)
7.  X  :  EClass(A)
8.  Y  :  EClass(B)
9.  Z  :  EClass(C)
10.  \mforall{}i:Id.  \mforall{}a:A.  \mforall{}b:B.  \mforall{}c:C.    (\#(F  i  a  b  c)  \mleq{}  1)
11.  \mforall{}e:E.  (\#(X  es  e)  \mleq{}  1)
12.  \mforall{}e:E.  (\#(Y  es  e)  \mleq{}  1)
13.  \mforall{}e:E.  (\#(Z  es  e)  \mleq{}  1)
14.  e  :  E@i
15.  \#(X  es  e)  \mleq{}  1
16.  \#(X  es  e)  =  1
17.  single-valued-bag(X  es  e;A)
18.  X  es  e  \msim{}  \{only(X  es  e)\}
19.  \#(Y  es  e)  \mleq{}  1
20.  \#(Y  es  e)  =  1
21.  single-valued-bag(Y  es  e;B)
22.  Y  es  e  \msim{}  \{only(Y  es  e)\}
23.  \#(Z  es  e)  \mleq{}  1
24.  \#(Z  es  e)  =  0
\mvdash{}  \#(bag-union(\mcup{}x@1\mmember{}Z  es  e.\{F  loc(e)  only(X  es  e)  only(Y  es  e)  x@1\}))  \mleq{}  1


By


Latex:
((InstLemma  `bag-size-zero`  [\mkleeneopen{}C\mkleeneclose{};\mkleeneopen{}Z  es  e\mkleeneclose{}]\mcdot{}  THENA  Auto)
  THEN  HypSubst'  (-1)  0
  THEN  (RWO  "bag-combine-empty-left"  0  THENA  Auto)
  THEN  Reduce  0
  THEN  Auto)\mcdot{}




Home Index