Nuprl Lemma : pi-add_wf
∀[A:Type]. ∀[B:A ─→ Type]. ∀[eq:EqDecider(A)]. ∀[q:(a:A × B[a]) List]. ∀[st:a:A fp-> B[a]].
  (pi-add(eq;q;st) ∈ a:A fp-> B[a])
Proof
Definitions occuring in Statement : 
pi-add: pi-add(eq;q;st)
, 
fpf: a:A fp-> B[a]
, 
deq: EqDecider(T)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
list_accum_wf, 
fpf-join_wf, 
fpf-single_wf, 
fpf_wf, 
list_wf, 
deq_wf
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[q:(a:A  \mtimes{}  B[a])  List].  \mforall{}[st:a:A  fp->  B[a]].
    (pi-add(eq;q;st)  \mmember{}  a:A  fp->  B[a])
Date html generated:
2015_07_23-AM-11_58_04
Last ObjectModification:
2015_01_29-AM-07_40_06
Home
Index