Nuprl Lemma : boot-process_wf
∀[M,E:Type ─→ Type].
  (∀[n:∩T:Type. E[T]]. ∀[f:∩T:Type. (M[T] ─→ (T?))].  (boot-process(f;n) ∈ process(P.M[P];P.E[P]))) supposing 
     (Continuous+(T.E[T]) and 
     Continuous+(T.M[T]))
Proof
Definitions occuring in Statement : 
boot-process: boot-process(f;n)
, 
process: process(P.M[P];P.E[P])
, 
strong-type-continuous: Continuous+(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
unit: Unit
, 
member: t ∈ T
, 
isect: ∩x:A. B[x]
, 
function: x:A ─→ B[x]
, 
union: left + right
, 
universe: Type
Lemmas : 
rec-process_wf, 
unit_wf2, 
strong-continuous-union, 
continuous-id, 
continuous-constant, 
it_wf, 
process_wf, 
subtype_rel_wf, 
strong-type-continuous_wf
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}[n:\mcap{}T:Type.  E[T]].  \mforall{}[f:\mcap{}T:Type.  (M[T]  {}\mrightarrow{}  (T?))].
          (boot-process(f;n)  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(T.E[T])  and 
          Continuous+(T.M[T]))
Date html generated:
2015_07_17-AM-11_20_25
Last ObjectModification:
2015_01_28-AM-07_34_31
Home
Index