Nuprl Lemma : boot-process_wf

[M,E:Type ─→ Type].
  (∀[n:∩T:Type. E[T]]. ∀[f:∩T:Type. (M[T] ─→ (T?))].  (boot-process(f;n) ∈ process(P.M[P];P.E[P]))) supposing 
     (Continuous+(T.E[T]) and 
     Continuous+(T.M[T]))


Proof




Definitions occuring in Statement :  boot-process: boot-process(f;n) process: process(P.M[P];P.E[P]) strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] unit: Unit member: t ∈ T isect: x:A. B[x] function: x:A ─→ B[x] union: left right universe: Type
Lemmas :  rec-process_wf unit_wf2 strong-continuous-union continuous-id continuous-constant it_wf process_wf subtype_rel_wf strong-type-continuous_wf
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}[n:\mcap{}T:Type.  E[T]].  \mforall{}[f:\mcap{}T:Type.  (M[T]  {}\mrightarrow{}  (T?))].
          (boot-process(f;n)  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(T.E[T])  and 
          Continuous+(T.M[T]))



Date html generated: 2015_07_17-AM-11_20_25
Last ObjectModification: 2015_01_28-AM-07_34_31

Home Index