Nuprl Lemma : class-ap-val-classrel

[Info,A,B:Type]. ∀[X:EClass(A ─→ B)]. ∀[a:A]. ∀[b:B]. ∀[es:EO+(Info)]. ∀[e:E].
  uiff(b ∈ X(a)(e);↓∃f:A ─→ B. ((b (f a) ∈ B) ∧ f ∈ X(e)))


Proof




Definitions occuring in Statement :  class-ap-val: X(v) classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  classrel_wf class-ap-val_wf squash_wf exists_wf es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf bag-member-map
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A  {}\mrightarrow{}  B)].  \mforall{}[a:A].  \mforall{}[b:B].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    uiff(b  \mmember{}  X(a)(e);\mdownarrow{}\mexists{}f:A  {}\mrightarrow{}  B.  ((b  =  (f  a))  \mwedge{}  f  \mmember{}  X(e)))



Date html generated: 2015_07_17-PM-00_34_50
Last ObjectModification: 2015_01_27-PM-11_32_47

Home Index