Nuprl Lemma : bag-member-map
∀[T,U:Type].  ∀x:U. ∀f:T ⟶ U. ∀bs:bag(T).  uiff(x ↓∈ bag-map(f;bs);↓∃v:T. (v ↓∈ bs ∧ (x = (f v) ∈ U)))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
bag-member: x ↓∈ bs
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
bag-map: bag-map(f;bs)
, 
top: Top
, 
empty-bag: {}
, 
false: False
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
single-bag: {x}
, 
bag-append: as + bs
, 
iff: P 
⇐⇒ Q
, 
sq_or: a ↓∨ b
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
cons-bag: x.b
, 
rev_uimplies: rev_uimplies(P;Q)
, 
guard: {T}
, 
sq_stable: SqStable(P)
Lemmas referenced : 
bag-member_wf, 
bag-map_wf, 
squash_wf, 
exists_wf, 
equal_wf, 
bag_wf, 
bag_to_squash_list, 
list_induction, 
list-subtype-bag, 
list_wf, 
map_nil_lemma, 
empty-bag_wf, 
bag-member-empty-iff, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
bag-map-append, 
single-bag_wf, 
top_wf, 
bag-member-append, 
map_cons_lemma, 
cons_wf, 
bag-member-single, 
bag-member-cons, 
sq_stable__bag-member, 
map_wf, 
member_map, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
imageElimination, 
hypothesis, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
thin, 
baseClosed, 
extract_by_obid, 
isectElimination, 
cumulativity, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
productEquality, 
functionEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
universeEquality, 
hyp_replacement, 
applyLambdaEquality, 
independent_functionElimination, 
independent_isectElimination, 
rename, 
voidElimination, 
voidEquality, 
unionElimination, 
dependent_pairFormation, 
inlFormation, 
inrFormation
Latex:
\mforall{}[T,U:Type].    \mforall{}x:U.  \mforall{}f:T  {}\mrightarrow{}  U.  \mforall{}bs:bag(T).    uiff(x  \mdownarrow{}\mmember{}  bag-map(f;bs);\mdownarrow{}\mexists{}v:T.  (v  \mdownarrow{}\mmember{}  bs  \mwedge{}  (x  =  (f  v))))
Date html generated:
2017_10_01-AM-08_54_08
Last ObjectModification:
2017_07_26-PM-04_35_53
Theory : bags
Home
Index