Nuprl Lemma : sq_stable__bag-member

[T:Type]. ∀[x:T]. ∀[bs:bag(T)].  SqStable(x ↓∈ bs)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag: bag(T) sq_stable: SqStable(P) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-member: x ↓∈ bs so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] sq_stable: SqStable(P) implies:  Q squash: T prop:
Lemmas referenced :  bag-member_wf squash_wf l_member_wf list-subtype-bag bag_wf equal_wf and_wf list_wf exists_wf sq_stable__squash
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality because_Cache independent_isectElimination dependent_functionElimination imageElimination imageMemberEquality baseClosed isect_memberEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].    SqStable(x  \mdownarrow{}\mmember{}  bs)



Date html generated: 2016_05_15-PM-02_36_35
Last ObjectModification: 2016_01_16-AM-08_50_42

Theory : bags


Home Index