Nuprl Lemma : bag-member-single
∀[T:Type]. ∀[x,y:T].  uiff(x ↓∈ {y};x = y ∈ T)
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
single-bag: {x}
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
bag-member: x ↓∈ bs
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
single-bag: {x}
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
cand: A c∧ B
, 
permutation: permutation(T;L1;L2)
, 
top: Top
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
l_member: (x ∈ l)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
true: True
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
select: L[n]
, 
cons: [a / b]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
Lemmas referenced : 
bag-member_wf, 
single-bag_wf, 
equal_wf, 
member_wf, 
list_wf, 
cons_wf, 
nil_wf, 
permutation_wf, 
length_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
permute_list_length, 
subtype_base_sq, 
int_subtype_base, 
squash_wf, 
true_wf, 
select_wf, 
le_wf, 
less_than_wf, 
false_wf, 
length-singleton, 
nat_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
iff_weakening_equal, 
permute_list_select, 
subtype_rel_dep_function, 
int_seg_wf, 
int_seg_subtype, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
int_seg_properties, 
lelt_wf, 
set_subtype_base, 
non_neg_length, 
length_wf_nat, 
decidable__equal_int, 
cons_member, 
l_member_wf, 
bag_wf, 
list-subtype-bag
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
pertypeElimination, 
productEquality, 
applyLambdaEquality, 
voidElimination, 
voidEquality, 
instantiate, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
applyEquality, 
lambdaEquality, 
natural_numberEquality, 
lambdaFormation, 
setElimination, 
rename, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
dependent_set_memberEquality, 
functionExtensionality, 
hyp_replacement, 
inlFormation
Latex:
\mforall{}[T:Type].  \mforall{}[x,y:T].    uiff(x  \mdownarrow{}\mmember{}  \{y\};x  =  y)
Date html generated:
2017_10_01-AM-08_53_32
Last ObjectModification:
2017_07_26-PM-04_35_11
Theory : bags
Home
Index