Nuprl Lemma : bag-member-single

[T:Type]. ∀[x,y:T].  uiff(x ↓∈ {y};x y ∈ T)


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs single-bag: {x} uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: all: x:A. B[x] bag-member: x ↓∈ bs squash: T exists: x:A. B[x] single-bag: {x} bag: bag(T) quotient: x,y:A//B[x; y] cand: c∧ B permutation: permutation(T;L1;L2) top: Top sq_type: SQType(T) implies:  Q guard: {T} l_member: (x ∈ l) le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b true: True nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q select: L[n] cons: [a b] so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  bag-member_wf single-bag_wf equal_wf member_wf list_wf cons_wf nil_wf permutation_wf length_wf length_of_cons_lemma length_of_nil_lemma permute_list_length subtype_base_sq int_subtype_base squash_wf true_wf select_wf le_wf less_than_wf false_wf length-singleton nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf iff_weakening_equal permute_list_select subtype_rel_dep_function int_seg_wf int_seg_subtype decidable__le intformle_wf int_formula_prop_le_lemma int_seg_properties lelt_wf set_subtype_base non_neg_length length_wf_nat decidable__equal_int cons_member l_member_wf bag_wf list-subtype-bag
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality dependent_functionElimination sqequalRule imageElimination imageMemberEquality baseClosed productElimination independent_pairEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry universeEquality pertypeElimination productEquality applyLambdaEquality voidElimination voidEquality instantiate intEquality independent_isectElimination independent_functionElimination applyEquality lambdaEquality natural_numberEquality lambdaFormation setElimination rename unionElimination dependent_pairFormation int_eqEquality computeAll dependent_set_memberEquality functionExtensionality hyp_replacement inlFormation

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:T].    uiff(x  \mdownarrow{}\mmember{}  \{y\};x  =  y)



Date html generated: 2017_10_01-AM-08_53_32
Last ObjectModification: 2017_07_26-PM-04_35_11

Theory : bags


Home Index