Nuprl Lemma : bag-map-append

[as:bag(Top)]. ∀[bs,f:Top].  (bag-map(f;as bs) bag-map(f;as) bag-map(f;bs))


Proof




Definitions occuring in Statement :  bag-append: as bs bag-map: bag-map(f;bs) bag: bag(T) uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] implies:  Q bag-map: bag-map(f;bs) bag-append: as bs nat: false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b)
Lemmas referenced :  bag-subtype-list list_wf top_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases list_ind_nil_lemma map_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_ind_cons_lemma map_cons_lemma bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality applyEquality extract_by_obid sqequalHypSubstitution dependent_functionElimination thin because_Cache hypothesis sqequalRule isectElimination lambdaFormation setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination sqequalAxiom unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate cumulativity imageElimination

Latex:
\mforall{}[as:bag(Top)].  \mforall{}[bs,f:Top].    (bag-map(f;as  +  bs)  \msim{}  bag-map(f;as)  +  bag-map(f;bs))



Date html generated: 2017_10_01-AM-08_45_58
Last ObjectModification: 2017_07_26-PM-04_31_02

Theory : bags


Home Index