Step
*
1
2
1
1
of Lemma
committed-inning0-reachable
1. V : Type
2. A : Id List
3. W : {a:Id| (a ∈ A)} List List
4. ||W|| ≥ 1
5. v : V
6. ∀L:Id List. (L ⊆ A
⇒ ((λa.<-1, ⊗>) ((λx,y. CR[x,y])^*) (λa.if a ∈b L) then <0, ⊗> else <-1, ⊗> fi )))
7. (λa.<-1, ⊗>) ((λx,y. CR[x,y])^*) (λa.<0, ⊗>)
⊢ (λa.<-1, ⊗>) ((λx,y. CR[x,y])^*) (λa.<0, 0 : v>)
BY
{ ((Using [`y',⌈λa.<0, ⊗>⌉] (BLemma `rel_star_transitivity`)⋅ THENA (Auto THEN Unfold `consensus-state4` 0 THEN Auto))
THEN Try (Trivial)
) }
1
1. V : Type
2. A : Id List
3. W : {a:Id| (a ∈ A)} List List
4. ||W|| ≥ 1
5. v : V
6. ∀L:Id List. (L ⊆ A
⇒ ((λa.<-1, ⊗>) ((λx,y. CR[x,y])^*) (λa.if a ∈b L) then <0, ⊗> else <-1, ⊗> fi )))
7. (λa.<-1, ⊗>) ((λx,y. CR[x,y])^*) (λa.<0, ⊗>)
⊢ (λa.<0, ⊗>) ((λx,y. CR[x,y])^*) (λa.<0, 0 : v>)
Latex:
1. V : Type
2. A : Id List
3. W : \{a:Id| (a \mmember{} A)\} List List
4. ||W|| \mgeq{} 1
5. v : V
6. \mforall{}L:Id List
(L \msubseteq{} A {}\mRightarrow{} ((\mlambda{}a.<-1, \motimes{}>) ((\mlambda{}x,y. CR[x,y])\^{}*) (\mlambda{}a.if a \mmember{}\msubb{} L) then ɘ, \motimes{}> else <-1, \motimes{}> fi )))
7. (\mlambda{}a.<-1, \motimes{}>) rel\_star(ConsensusState; \mlambda{}x,y. CR[x,y]) (\mlambda{}a.ɘ, \motimes{}>)
\mvdash{} (\mlambda{}a.<-1, \motimes{}>) rel\_star(ConsensusState; \mlambda{}x,y. CR[x,y]) (\mlambda{}a.ɘ, 0 : v>)
By
((Using [`y',\mkleeneopen{}\mlambda{}a.ɘ, \motimes{}>\mkleeneclose{}] (BLemma `rel\_star\_transitivity`)\mcdot{}
THENA (Auto THEN Unfold `consensus-state4` 0 THEN Auto)
)
THEN Try (Trivial)
)
Home
Index