Nuprl Lemma : consensus-accum-state_wf
∀[V:Type]. ∀[A:Id List]. ∀[L:consensus-event(V;A) List].
  (consensus-accum-state(A;L) ∈ ℤ × j:ℤ fp-> V × b:Id fp-> ℤ × (ℤ × V + Top))
Proof
Definitions occuring in Statement : 
consensus-accum-state: consensus-accum-state(A;L)
, 
consensus-event: consensus-event(V;A)
, 
fpf: a:A fp-> B[a]
, 
Id: Id
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
union: left + right
, 
int: ℤ
, 
universe: Type
Lemmas : 
list_accum_wf, 
fpf_wf, 
top_wf, 
fpf-empty_wf, 
mk_fpf_wf, 
l_member_wf, 
consensus-accum_wf, 
list_wf, 
consensus-event_wf, 
Id_wf
\mforall{}[V:Type].  \mforall{}[A:Id  List].  \mforall{}[L:consensus-event(V;A)  List].
    (consensus-accum-state(A;L)  \mmember{}  \mBbbZ{}  \mtimes{}  j:\mBbbZ{}  fp->  V  \mtimes{}  b:Id  fp->  \mBbbZ{}  \mtimes{}  (\mBbbZ{}  \mtimes{}  V  +  Top))
Date html generated:
2015_07_17-AM-11_44_50
Last ObjectModification:
2015_01_28-AM-01_30_33
Home
Index