Step
*
2
1
2
of Lemma
consensus-ts4-estimate-rel
1. V : Type
2. A : Id List
3. W : {a:Id| (a ∈ A)} List List
4. a : {a:Id| (a ∈ A)}
5. x : ConsensusState@i
6. y : ConsensusState@i
7. a1 : {a:Id| (a ∈ A)} @i
8. ∀b:{a:Id| (a ∈ A)}
((¬(b = a1 ∈ Id))
⇒ ((Inning(y;b) = Inning(x;b) ∈ ℤ) ∧ (Estimate(y;b) = Estimate(x;b) ∈ i:ℤ fp-> V)))@i
9. Inning(y;a1) = Inning(x;a1) ∈ ℤ@i
10. ¬(Inning(x;a1) ∈ fpf-domain(Estimate(x;a1)))@i
11. ∃v:V
(state x may consider v in inning Inning(x;a1)
∧ (Estimate(y;a1) = Estimate(x;a1) ⊕ Inning(x;a1) : v ∈ i:ℤ fp-> V))@i
12. a = a1 ∈ Id
⊢ Estimate(x;a1) ⊆ Estimate(y;a1)
BY
{ (ExRepD THEN HypSubst' -2 0 THEN Auto) }
1
1. V : Type
2. A : Id List
3. W : {a:Id| (a ∈ A)} List List
4. a : {a:Id| (a ∈ A)}
5. x : ConsensusState@i
6. y : ConsensusState@i
7. a1 : {a:Id| (a ∈ A)} @i
8. ∀b:{a:Id| (a ∈ A)}
((¬(b = a1 ∈ Id))
⇒ ((Inning(y;b) = Inning(x;b) ∈ ℤ) ∧ (Estimate(y;b) = Estimate(x;b) ∈ i:ℤ fp-> V)))@i
9. Inning(y;a1) = Inning(x;a1) ∈ ℤ@i
10. ¬(Inning(x;a1) ∈ fpf-domain(Estimate(x;a1)))@i
11. v : V@i
12. state x may consider v in inning Inning(x;a1)@i
13. Estimate(y;a1) = Estimate(x;a1) ⊕ Inning(x;a1) : v ∈ i:ℤ fp-> V@i
14. a = a1 ∈ Id
⊢ Estimate(x;a1) ⊆ Estimate(x;a1) ⊕ Inning(x;a1) : v
Latex:
1. V : Type
2. A : Id List
3. W : \{a:Id| (a \mmember{} A)\} List List
4. a : \{a:Id| (a \mmember{} A)\}
5. x : ConsensusState@i
6. y : ConsensusState@i
7. a1 : \{a:Id| (a \mmember{} A)\} @i
8. \mforall{}b:\{a:Id| (a \mmember{} A)\}
((\mneg{}(b = a1)) {}\mRightarrow{} ((Inning(y;b) = Inning(x;b)) \mwedge{} (Estimate(y;b) = Estimate(x;b))))@i
9. Inning(y;a1) = Inning(x;a1)@i
10. \mneg{}(Inning(x;a1) \mmember{} fpf-domain(Estimate(x;a1)))@i
11. \mexists{}v:V
(state x may consider v in inning Inning(x;a1)
\mwedge{} (Estimate(y;a1) = Estimate(x;a1) \moplus{} Inning(x;a1) : v))@i
12. a = a1
\mvdash{} Estimate(x;a1) \msubseteq{} Estimate(y;a1)
By
(ExRepD THEN HypSubst' -2 0 THEN Auto)
Home
Index