Step
*
2
1
of Lemma
cs-possible-state-reachable
.....wf.....
1. V : Type
2. A : Id List
3. W : {a:Id| (a ∈ A)} List List
4. v : V
5. 1 < ||W||
6. two-intersection(A;W)
⊢ λL.(ts-init(consensus-ts5(V;A;W))
(ts-rel(consensus-ts5(V;A;W))^*)
<λa.<0, if a ∈b L) then 0 : v else ⊗ fi >, λa.mk_fpf(A;λb.<0, ff>)>) ∈ ({a:Id| (a ∈ A)} List) ─→ ℙ
BY
{ RepeatFor 2 ((MemCD THEN Try (CompleteAuto))) }
1
.....subterm..... T:t
3:n
1. V : Type
2. A : Id List
3. W : {a:Id| (a ∈ A)} List List
4. v : V
5. 1 < ||W||
6. two-intersection(A;W)
7. L : {a:Id| (a ∈ A)} List@i
⊢ <λa.<0, if a ∈b L) then 0 : v else ⊗ fi >, λa.mk_fpf(A;λb.<0, ff>)> ∈ ts-type(consensus-ts5(V;A;W))
Latex:
.....wf.....
1. V : Type
2. A : Id List
3. W : \{a:Id| (a \mmember{} A)\} List List
4. v : V
5. 1 < ||W||
6. two-intersection(A;W)
\mvdash{} \mlambda{}L.(ts-init(consensus-ts5(V;A;W))
rel\_star(ts-type(consensus-ts5(V;A;W)); ts-rel(consensus-ts5(V;A;W)))
<\mlambda{}a.ɘ, if a \mmember{}\msubb{} L) then 0 : v else \motimes{} fi >, \mlambda{}a.mk\_fpf(A;\mlambda{}b.ɘ, ff>)>) \mmember{} (\{a:Id| (a \mmember{} A)\} List)\000C {}\mrightarrow{} \mBbbP{}
By
RepeatFor 2 ((MemCD THEN Try (CompleteAuto)))
Home
Index