Step * 1 1 1 of Lemma cut-of-singleton


1. Info Type@i'
2. es EO+(Info)@i'
3. EClass(Top)@i'
4. sys-antecedent(es;X)@i
5. E(X)@i
6. ∀[s:fset(E(X))]. (s ⊆ cut(X;f;s) ∧ (∀[c':Cut(X;f)]. cut(X;f;s) ⊆ c' supposing s ⊆ c'))
7. {f e} ⊆ cut(X;f;{f e}) ∧ (∀[c':Cut(X;f)]. cut(X;f;{f e}) ⊆ c' supposing {f e} ⊆ c')
8. {e} ⊆ cut(X;f;{e}) ∧ (∀[c':Cut(X;f)]. cut(X;f;{e}) ⊆ c' supposing {e} ⊆ c')
9. ↑e ∈b prior(X)
10. (f e) e ∈ E
⊢ cut(X;f;{e}) {e} ∪ cut(X;f;{prior(X)(e)}) ∈ fset(E(X))
BY
(InstHyp [⌈{prior(X)(e)}⌉(-5)⋅ THENA Auto)⋅ }

1
1. Info Type@i'
2. es EO+(Info)@i'
3. EClass(Top)@i'
4. sys-antecedent(es;X)@i
5. E(X)@i
6. ∀[s:fset(E(X))]. (s ⊆ cut(X;f;s) ∧ (∀[c':Cut(X;f)]. cut(X;f;s) ⊆ c' supposing s ⊆ c'))
7. {f e} ⊆ cut(X;f;{f e}) ∧ (∀[c':Cut(X;f)]. cut(X;f;{f e}) ⊆ c' supposing {f e} ⊆ c')
8. {e} ⊆ cut(X;f;{e}) ∧ (∀[c':Cut(X;f)]. cut(X;f;{e}) ⊆ c' supposing {e} ⊆ c')
9. ↑e ∈b prior(X)
10. (f e) e ∈ E
11. {prior(X)(e)} ⊆ cut(X;f;{prior(X)(e)}) ∧ (∀[c':Cut(X;f)]. cut(X;f;{prior(X)(e)}) ⊆ c' supposing {prior(X)(e)} ⊆ c')
⊢ cut(X;f;{e}) {e} ∪ cut(X;f;{prior(X)(e)}) ∈ fset(E(X))


Latex:



Latex:

1.  Info  :  Type@i'
2.  es  :  EO+(Info)@i'
3.  X  :  EClass(Top)@i'
4.  f  :  sys-antecedent(es;X)@i
5.  e  :  E(X)@i
6.  \mforall{}[s:fset(E(X))].  (s  \msubseteq{}  cut(X;f;s)  \mwedge{}  (\mforall{}[c':Cut(X;f)].  cut(X;f;s)  \msubseteq{}  c'  supposing  s  \msubseteq{}  c'))
7.  \{f  e\}  \msubseteq{}  cut(X;f;\{f  e\})  \mwedge{}  (\mforall{}[c':Cut(X;f)].  cut(X;f;\{f  e\})  \msubseteq{}  c'  supposing  \{f  e\}  \msubseteq{}  c')
8.  \{e\}  \msubseteq{}  cut(X;f;\{e\})  \mwedge{}  (\mforall{}[c':Cut(X;f)].  cut(X;f;\{e\})  \msubseteq{}  c'  supposing  \{e\}  \msubseteq{}  c')
9.  \muparrow{}e  \mmember{}\msubb{}  prior(X)
10.  (f  e)  =  e
\mvdash{}  cut(X;f;\{e\})  =  \{e\}  \mcup{}  cut(X;f;\{prior(X)(e)\})


By


Latex:
(InstHyp  [\mkleeneopen{}\{prior(X)(e)\}\mkleeneclose{}]  (-5)\mcdot{}  THENA  Auto)\mcdot{}




Home Index