Nuprl Lemma : cut-of-singleton
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[f:sys-antecedent(es;X)]. ∀[e:E(X)].
  (cut(X;f;{e})
  = if e ∈b prior(X) then if f e = e then {e} else {e} ∪ cut(X;f;{f e}) fi  ∪ cut(X;f;{prior(X)(e)})
    if f e = e then {e}
    else {e} ∪ cut(X;f;{f e})
    fi 
  ∈ Cut(X;f))
Proof
Definitions occuring in Statement : 
cut-of: cut(X;f;s)
, 
es-cut: Cut(X;f)
, 
es-prior-interface: prior(X)
, 
sys-antecedent: sys-antecedent(es;Sys)
, 
es-E-interface: E(X)
, 
eclass-val: X(e)
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-eq-E: e = e'
, 
es-eq: es-eq(es)
, 
fset-singleton: {x}
, 
fset-union: x ∪ y
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
apply: f a
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
fset-closed_wf, 
es-eq_wf-interface, 
cons_wf, 
es-interface-pred_wf2, 
nil_wf, 
es-E-interface_wf, 
sys-antecedent_wf, 
eclass_wf, 
top_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
cut-of-property, 
fset-singleton_wf, 
in-eclass_wf, 
es-prior-interface_wf0, 
es-interface-subtype_rel2, 
subtype_top, 
bool_wf, 
eqtt_to_assert, 
uiff_transitivity, 
equal-wf-T-base, 
assert_wf, 
equal_wf, 
assert-es-eq-E-2, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
eclass-val_wf2, 
es-prior-interface_wf, 
f-subset_antisymmetry, 
cut-of_wf, 
es-cut_wf, 
fset-union_wf, 
es-cut-add_wf, 
member-fset-singleton, 
and_wf, 
assert_elim, 
subtype_base_sq, 
bool_subtype_base, 
f-singleton-subset, 
member-cut-add, 
fset-member_wf-cut, 
f-union-subset, 
cut-of-closed, 
fset_wf, 
fset-union-associative, 
iff_weakening_equal, 
es-cut-union, 
member-fset-union, 
f-subset-union, 
empty-fset_wf-cut, 
fset-member_wf, 
empty-fset_wf, 
f-subset_wf, 
squash_wf, 
true_wf, 
deq_wf, 
sq_stable_from_decidable, 
decidable__fset-closed
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:sys-antecedent(es;X)].  \mforall{}[e:E(X)].
    (cut(X;f;\{e\})
    =  if  e  \mmember{}\msubb{}  prior(X)  then  if  f  e  =  e  then  \{e\}  else  \{e\}  \mcup{}  cut(X;f;\{f  e\})  fi    \mcup{}  cut(X;f;\{prior(X)(e)\})
        if  f  e  =  e  then  \{e\}
        else  \{e\}  \mcup{}  cut(X;f;\{f  e\})
        fi  )
Date html generated:
2015_07_21-PM-04_04_02
Last ObjectModification:
2015_02_04-PM-06_10_20
Home
Index