Nuprl Lemma : cut-of-singleton

[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[f:sys-antecedent(es;X)]. ∀[e:E(X)].
  (cut(X;f;{e})
  if e ∈b prior(X) then if then {e} else {e} ∪ cut(X;f;{f e}) fi  ∪ cut(X;f;{prior(X)(e)})
    if then {e}
    else {e} ∪ cut(X;f;{f e})
    fi 
  ∈ Cut(X;f))


Proof




Definitions occuring in Statement :  cut-of: cut(X;f;s) es-cut: Cut(X;f) es-prior-interface: prior(X) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-eq-E: e' es-eq: es-eq(es) fset-singleton: {x} fset-union: x ∪ y ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top apply: a universe: Type equal: t ∈ T
Lemmas :  fset-closed_wf es-eq_wf-interface cons_wf es-interface-pred_wf2 nil_wf es-E-interface_wf sys-antecedent_wf eclass_wf top_wf es-E_wf event-ordering+_subtype event-ordering+_wf cut-of-property fset-singleton_wf in-eclass_wf es-prior-interface_wf0 es-interface-subtype_rel2 subtype_top bool_wf eqtt_to_assert uiff_transitivity equal-wf-T-base assert_wf equal_wf assert-es-eq-E-2 iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot eclass-val_wf2 es-prior-interface_wf f-subset_antisymmetry cut-of_wf es-cut_wf fset-union_wf es-cut-add_wf member-fset-singleton and_wf assert_elim subtype_base_sq bool_subtype_base f-singleton-subset member-cut-add fset-member_wf-cut f-union-subset cut-of-closed fset_wf fset-union-associative iff_weakening_equal es-cut-union member-fset-union f-subset-union empty-fset_wf-cut fset-member_wf empty-fset_wf f-subset_wf squash_wf true_wf deq_wf sq_stable_from_decidable decidable__fset-closed

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:sys-antecedent(es;X)].  \mforall{}[e:E(X)].
    (cut(X;f;\{e\})
    =  if  e  \mmember{}\msubb{}  prior(X)  then  if  f  e  =  e  then  \{e\}  else  \{e\}  \mcup{}  cut(X;f;\{f  e\})  fi    \mcup{}  cut(X;f;\{prior(X)(e)\})
        if  f  e  =  e  then  \{e\}
        else  \{e\}  \mcup{}  cut(X;f;\{f  e\})
        fi  )



Date html generated: 2015_07_21-PM-04_04_02
Last ObjectModification: 2015_02_04-PM-06_10_20

Home Index